Albesa-Jové D, Guerin ME. The conformational plasticity of glycosyltransferases. Curr Opin Struct Biol. 2016;40:23–32. https://doi.org/10.1016/j.sbi.2016.07.007.
Article CAS PubMed Google Scholar
Jacob F, Alam S, Konantz M, Liang C, Kohler RS, Everest-Dass AV, et al. Transition of mesenchymal and epithelial cancer cells depends on α1-4 galactosyltransferase-mediated glycosphingolipids. Cancer Res. 2018;78:2952–65. https://doi.org/10.1158/0008-5472.CAN-17-2223.
Article CAS PubMed Google Scholar
Mikolajczyk K, Bereznicka A, Szymczak-Kulus K, Haczkiewicz-Lesniak K, Szulc B, Olczak M, et al. Missing the sweet spot: one of the two N-glycans on human Gb3/CD77 synthase is expendable. Glycobiology. 2021;31:1145–62. https://doi.org/10.1093/glycob/cwab041.
Article CAS PubMed Google Scholar
Mikolajczyk K, Sikora M, Hanus C, Kaczmarek R, Czerwinski M. One of the two N-glycans on the human Gb3/CD77 synthase is essential for its activity and allosterically regulates its function. Biochem Biophys Res Commun. 2022;617:36–41. https://doi.org/10.1016/j.bbrc.2022.05.085.
Article CAS PubMed Google Scholar
Yamaji T, Sekizuka T, Tachida Y, Sakuma C, Morimoto K, Kuroda M, et al. A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors. IScience. 2019;11:409–24. https://doi.org/10.1016/j.isci.2018.12.039.
Article CAS PubMed PubMed Central Google Scholar
D’Angelo G, Uemura T, Chuang CC, Polishchuk E, Santoro M, Ohvo-Rekilä H, et al. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature. 2013;501:116–20. https://doi.org/10.1038/nature12423.
Article CAS PubMed Google Scholar
Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, et al. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J. 2021;40:1–21. https://doi.org/10.15252/embj.2020107238.
Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLOS Biol. 2018;16: e2006951. https://doi.org/10.1371/journal.pbio.2006951.
Article CAS PubMed PubMed Central Google Scholar
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett. 2019;593:2452–65. https://doi.org/10.1002/1873-3468.13553.
Article CAS PubMed Google Scholar
Welch LG, Peak-Chew S-Y, Begum F, Stevens TJ, Munro S. GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles. J Cell Biol. 2021. https://doi.org/10.1083/jcb.202106115.
Article PubMed PubMed Central Google Scholar
Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K, et al. Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem. 2000;275:15152–6.
Article CAS PubMed Google Scholar
Kaczmarek R, Duk M, Szymczak K, Korchagina E, Tyborowska J, Mikolajczyk K, et al. Human Gb3/CD77 synthase reveals specificity toward two or four different acceptors depending on amino acid at position 211, creating Pk, P1 and NOR blood group antigens. Biochem Biophys Res Commun. 2016;470:168–74. https://doi.org/10.1016/j.bbrc.2016.01.017.
Article CAS PubMed Google Scholar
Szymczak-Kulus K, Weidler S, Bereznicka A, Mikolajczyk K, Kaczmarek R, Bednarz B, et al. Human Gb3/CD77 synthase produces P1 glycotope-capped N-glycans, which mediate Shiga toxin 1 but not Shiga toxin 2 cell entry. J Biol Chem. 2021;296:100299. https://doi.org/10.1016/j.jbc.2021.100299.
Article CAS PubMed PubMed Central Google Scholar
Jin C, Teneberg S. Characterization of novel nonacid glycosphingolipids as biomarkers of human gastric adenocarcinoma. J Biol Chem. 2022;298:101732. https://doi.org/10.1016/j.jbc.2022.101732.
Article CAS PubMed PubMed Central Google Scholar
Suchanowska A, Kaczmarek R, Duk M, Lukasiewicz J, Smolarek D, Majorczyk E, et al. A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. J Biol Chem. 2012;287:38220–30. https://doi.org/10.1074/jbc.M112.408286.
Article CAS PubMed PubMed Central Google Scholar
Duk M, Reinhold BB, Reinhold VN, Kusnierz-Alejska G, Lisowska E. Structure of a neutral glycosphingolipid recognized by human antibodies in polyagglutinable erythrocytes from the rare NOR phenotype. J Biol Chem. 2001;276:40574–82. https://doi.org/10.1074/jbc.M102711200.
Article CAS PubMed Google Scholar
Czerwinski M, Kaczmarek R. NOR blood group antigen. In: Polyagglutination: an update and review. Bethesda: AABB Press; 2022. p. 63–72.
Harris PA, Roman GK, Moulds JJ, Bird GWG, Shah NG. An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang. 1982;42:134–40. https://doi.org/10.1111/j.1423-0410.1982.tb01083.x.
Article CAS PubMed Google Scholar
Kuśnierz-Alejska G, Duk M, Stony JR, Reid ME, Wiȩcek B, Seyfried H, et al. NOR polyagglutination and Sta glycophorin in one family: relation of NOR polyagglutination to terminal α-galactose residues and abnormal glycolipids. Transfusion. 1999;39:32–8. https://doi.org/10.1046/j.1537-2995.1999.39199116892.x.
Lisowska E, Duk M. Polyagglutination NOR: new glycosphingolipid antigens recognized by a new type of common human anti-α-galactosyl antibodies. Arch Biochem Biophys. 2004;426:142–7. https://doi.org/10.1016/j.abb.2004.02.035.
Article CAS PubMed Google Scholar
Mourad R, Morelle W, Neveu A, Strecker G. Diversity of O-linked glycosylation patterns between species: characterization of 25 carbohydrate chains from oviducal mucins of Rana ridibunda. Eur J Biochem. 2001;268:1990–2003. https://doi.org/10.1046/j.1432-1327.2001.02071.x.
Article CAS PubMed Google Scholar
Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011;7: e1002372. https://doi.org/10.1371/journal.ppat.1002372.
Article CAS PubMed PubMed Central Google Scholar
Hellberg Å. P1PK: a blood group system with an identity crisis. ISBT Sci Ser. 2020;15:40–5. https://doi.org/10.1111/voxs.12505.
Kaczmarek R, Buczkowska A, Mikołajewicz K, Krotkiewski H, Czerwinski M. P1PK, GLOB, and FORS blood group systems and GLOB collection: biochemical and clinical aspects: do we understand it all yet? Transfus Med Rev. 2014;28:126–36. https://doi.org/10.1016/j.tmrv.2014.04.007.
Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. Amsterdam: Elsevier Ltd.; 2012. https://doi.org/10.1016/C2011-0-69689-9.
Hellberg Å, Steffensen R, Yahalom V, Sojka BN, Heier HE, Levene C, et al. Additional molecular bases of the clinically important p blood group phenotype. Transfusion. 2003;43:899–907. https://doi.org/10.1046/j.1537-2995.2003.00425.x.
Article CAS PubMed Google Scholar
Steffensen R, Carlier K, Wiels J, Levery SB, Stroud M, Cedergren B, et al. Cloning and expression of the Histo-blood group PkUDP-galactose: Galβ1–4Glcβ1-Cer α1,4-galactosyltransferase. J Biol Chem. 2000;275:16723–9. https://doi.org/10.1074/jbc.M000728200.
Article CAS PubMed Google Scholar
Iwamura K, Furukawa K, Uchikawa M, Sojka BN, Kojima Y, Wiels J, et al. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. J Biol Chem. 2003;278:44429–38. https://doi.org/10.1074/jbc.M301609200.
留言 (0)