Madhaiyan M, et al. Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera. Int J Syst Evol Microbiol. 2022;72, https://doi.org/10.1099/ijsem.0.005570.
Oren A. Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc B: Biol Sci. 2004;359:623–38.
Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.
Article CAS PubMed PubMed Central Google Scholar
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.
Article CAS PubMed Google Scholar
Setubal JC, Almeida NF, Wattam AR. Comparative genomics for prokaryotes. Methods Mol Biol. 2018;1704:55–78.
Article CAS PubMed Google Scholar
Yee DA, et al. Genome mining for unknown–unknown natural products. Nat Chem Biol. 2023;19:633–40.
Article CAS PubMed PubMed Central Google Scholar
Kaweewan I, Ijichi S, Nakagawa H, Kodani S. Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol. 2022;39:30.
Liu J, Li SM. Genomics-Guided efficient identification of 2,5-Diketopiperazine Derivatives from Actinobacteria. ChemBioChem. 2023;24:e202200502.
Article CAS PubMed Google Scholar
Kämpfer P, Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse HJ,Trujillo ME, Suzuki KI et al., editors. Bergey’s manual of systematic bacteriology PartB, 2nd ed. vol.5. NewYork: Springer; 2012. p.1455–1767.
Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med. 1944;55:66–9.
Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.
Shi S, et al. Streptomyces marincola sp. nov., a novel marine actinomycete, and its biosynthetic potential of bioactive natural products. Front Microbiol. 2022;13:860308.
Article PubMed PubMed Central Google Scholar
Buangrab K, et al. Streptomyces corallincola and Kineosporia corallincola sp. nov., two new coral-derived marine actinobacteria. Int J Syst Evol Microbiol. 2022;72, https://doi.org/10.1099/ijsem.0.005249.
Chen Y, et al. Discovery of niphimycin C from Streptomyces yongxingensis sp. nov. as a promising agrochemical fungicide for controlling banana Fusarium wilt by destroying the mitochondrial structure and function. J Agric Food Chem. 2022;70:12784–95.
Article CAS PubMed Google Scholar
Tenebro CP, et al. Synergy between genome mining, metabolomics, and bioinformatics uncovers antibacterial chlorinated carbazole alkaloids and their biosynthetic gene cluster from Streptomyces tubbatahanensis sp. nov., a novel actinomycete isolated from Sulu Sea, Philippines. Microbiol Spectr. 2023;11:e03661–22.
Article PubMed PubMed Central Google Scholar
Takahashi M, et al. Streptomyces pacificus sp. nov., a novel spongiicolazolicin-producing actinomycete isolated from a coastal sediment. J Antibiot. 2023;76:93–100.
Sandoval-Powers M, et al. Streptomyces poriferorum sp. nov., a novel marine sponge-derived actinobacteria species expressing anti-MRSA activity. Syst Appl Microbiol. 2021;44:126244.
Article CAS PubMed Google Scholar
Amelia TSM, et al. Recent advances of marine sponge-associated microorganisms as a source of commercially viable natural products. Mar Biotechnol. 2022;24:492–512.
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem. 2021;210:112957.
Article CAS PubMed Google Scholar
Bo ST, et al. Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454. J Antibiot. 2018;71:601–05.
Almeida EL, et al. Genome mining coupled with osmac-based cultivation reveal differential production of surugamide a by the marine sponge isolate Streptomyces sp. SM17 when compared to its terrestrial relative S. albidoflavus J1074. Microorganisms. 2019;7:394.
Article CAS PubMed PubMed Central Google Scholar
Gozari M, Bahador N, Mortazavi MS, Eftekhar E, Jassbi AR. An “olivomycin A” derivative from a sponge-associated Streptomyces sp. strain SP 85. 3 Biotech. 2019;9:439.
Article PubMed PubMed Central Google Scholar
Shirling EB, Gottlibe D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.
Suzuki M, et al. Isolation and structure determination of new linear azole- containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol. 2021;105:93–104.
Article CAS PubMed Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article CAS PubMed PubMed Central Google Scholar
Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
Article CAS PubMed PubMed Central Google Scholar
Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34:1037–9.
Article CAS PubMed Google Scholar
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article CAS PubMed PubMed Central Google Scholar
Blin K, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023;51:W46–W50.
Article CAS PubMed PubMed Central Google Scholar
Lau RCM, Rinehart KL. Berninamycins B, C, and D, minor metabolites from Streptomyces bernensis. J Antibiot. 1994;47:1466–72.
Kodani S, et al. Sphaericin, a lasso peptide from the rare actinomycete Planomonospora sphaerica. Eur J Org Chem. 2017;2017:1177–83.
Yoon SH, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.
Article CAS PubMed PubMed Central Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol. 2000;17:1251–8.
Article CAS PubMed Google Scholar
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.
Article CAS PubMed Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2021;35:1547–9.
留言 (0)