Streptomyces yaizuensis sp. nov., a berninamycin C-producing actinomycete isolated from sponge

Madhaiyan M, et al. Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera. Int J Syst Evol Microbiol. 2022;72, https://doi.org/10.1099/ijsem.0.005570.

Oren A. Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc B: Biol Sci. 2004;359:623–38.

Article  CAS  Google Scholar 

Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

Article  CAS  PubMed  Google Scholar 

Setubal JC, Almeida NF, Wattam AR. Comparative genomics for prokaryotes. Methods Mol Biol. 2018;1704:55–78.

Article  CAS  PubMed  Google Scholar 

Yee DA, et al. Genome mining for unknown–unknown natural products. Nat Chem Biol. 2023;19:633–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaweewan I, Ijichi S, Nakagawa H, Kodani S. Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol. 2022;39:30.

Article  PubMed  Google Scholar 

Liu J, Li SM. Genomics-Guided efficient identification of 2,5-Diketopiperazine Derivatives from Actinobacteria. ChemBioChem. 2023;24:e202200502.

Article  CAS  PubMed  Google Scholar 

Kämpfer P, Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse HJ,Trujillo ME, Suzuki KI et al., editors. Bergey’s manual of systematic bacteriology PartB, 2nd ed. vol.5. NewYork: Springer; 2012. p.1455–1767.

Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med. 1944;55:66–9.

Article  CAS  Google Scholar 

Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

Article  Google Scholar 

Shi S, et al. Streptomyces marincola sp. nov., a novel marine actinomycete, and its biosynthetic potential of bioactive natural products. Front Microbiol. 2022;13:860308.

Article  PubMed  PubMed Central  Google Scholar 

Buangrab K, et al. Streptomyces corallincola and Kineosporia corallincola sp. nov., two new coral-derived marine actinobacteria. Int J Syst Evol Microbiol. 2022;72, https://doi.org/10.1099/ijsem.0.005249.

Chen Y, et al. Discovery of niphimycin C from Streptomyces yongxingensis sp. nov. as a promising agrochemical fungicide for controlling banana Fusarium wilt by destroying the mitochondrial structure and function. J Agric Food Chem. 2022;70:12784–95.

Article  CAS  PubMed  Google Scholar 

Tenebro CP, et al. Synergy between genome mining, metabolomics, and bioinformatics uncovers antibacterial chlorinated carbazole alkaloids and their biosynthetic gene cluster from Streptomyces tubbatahanensis sp. nov., a novel actinomycete isolated from Sulu Sea, Philippines. Microbiol Spectr. 2023;11:e03661–22.

Article  PubMed  PubMed Central  Google Scholar 

Takahashi M, et al. Streptomyces pacificus sp. nov., a novel spongiicolazolicin-producing actinomycete isolated from a coastal sediment. J Antibiot. 2023;76:93–100.

Article  CAS  Google Scholar 

Sandoval-Powers M, et al. Streptomyces poriferorum sp. nov., a novel marine sponge-derived actinobacteria species expressing anti-MRSA activity. Syst Appl Microbiol. 2021;44:126244.

Article  CAS  PubMed  Google Scholar 

Amelia TSM, et al. Recent advances of marine sponge-associated microorganisms as a source of commercially viable natural products. Mar Biotechnol. 2022;24:492–512.

Article  CAS  Google Scholar 

Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem. 2021;210:112957.

Article  CAS  PubMed  Google Scholar 

Bo ST, et al. Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454. J Antibiot. 2018;71:601–05.

Article  CAS  Google Scholar 

Almeida EL, et al. Genome mining coupled with osmac-based cultivation reveal differential production of surugamide a by the marine sponge isolate Streptomyces sp. SM17 when compared to its terrestrial relative S. albidoflavus J1074. Microorganisms. 2019;7:394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gozari M, Bahador N, Mortazavi MS, Eftekhar E, Jassbi AR. An “olivomycin A” derivative from a sponge-associated Streptomyces sp. strain SP 85. 3 Biotech. 2019;9:439.

Article  PubMed  PubMed Central  Google Scholar 

Shirling EB, Gottlibe D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

Article  Google Scholar 

Suzuki M, et al. Isolation and structure determination of new linear azole- containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol. 2021;105:93–104.

Article  CAS  PubMed  Google Scholar 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34:1037–9.

Article  CAS  PubMed  Google Scholar 

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blin K, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023;51:W46–W50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau RCM, Rinehart KL. Berninamycins B, C, and D, minor metabolites from Streptomyces bernensis. J Antibiot. 1994;47:1466–72.

Article  CAS  Google Scholar 

Kodani S, et al. Sphaericin, a lasso peptide from the rare actinomycete Planomonospora sphaerica. Eur J Org Chem. 2017;2017:1177–83.

Yoon SH, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

CAS  PubMed  Google Scholar 

Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol. 2000;17:1251–8.

Article  CAS  PubMed  Google Scholar 

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

Article  CAS  PubMed  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2021;35:1547–9.

留言 (0)

沒有登入
gif