Assessment of pharmacological effects and abuse potential of 5F-EDMB-PICA, CUMYL-PEGACLONE, and NM-2201 in mice

Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43. https://doi.org/10.1007/s002130000569

Article  PubMed  CAS  Google Scholar 

Breivogel CS, Wells JR, Jonas A et al (2020) Comparison of the neurotoxic and seizure-inducing effects of Synthetic and endogenous cannabinoids with ∆ 9 -Tetrahydrocannabinol. Cannabis Cannabinoid Res 5:32–41. https://doi.org/10.1089/can.2019.0003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Canazza I, Ossato A, Trapella C et al (2016) Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on tetrad, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 233:3685–3709. https://doi.org/10.1007/s00213-016-4402-y

Article  PubMed  CAS  Google Scholar 

Diao X, Carlier J, Zhu M et al (2017) In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicol 35:20–32. https://doi.org/10.1007/s11419-016-0326-9

Article  PubMed  CAS  Google Scholar 

Falenski KW, Thorpe AJ, Schlosburg JE et al (2010) FAAH–/– mice Display Differential Tolerance, Dependence, and cannabinoid receptor adaptation after ∆9-Tetrahydrocannabinol and Anandamide Administration. Neuropsychopharmacology 35:1775–1787. https://doi.org/10.1038/npp.2010.44

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fogel JS, Kelly TH, Westgate PM, Lile JA (2017) Sex differences in the subjective effects of oral ∆9-THC in cannabis users. Pharmacol Biochem Behav 152:44–51. https://doi.org/10.1016/j.pbb.2016.01.007

Article  PubMed  CAS  Google Scholar 

Foll BL, Wiggins M, Goldberg SR (2006) Nicotine pre-exposure does not potentiate the locomotor or rewarding effects of D-9-tetrahydrocannabinol in rats. https://doi.org/10.1097/01.fbp.0000197460.16516.81

Gatch MB, Forster MJ (2018) ∆9-Tetrahydrocannabinol-like discriminative stimulus effects of five novel synthetic cannabinoids in rats. Psychopharmacology 235:673–680. https://doi.org/10.1007/s00213-017-4783-6

Article  PubMed  CAS  Google Scholar 

Giorgetti A, Brunetti P, Haschimi B et al (2023) Human phase-I metabolism and prevalence of two synthetic cannabinoids bearing an ethyl ester moiety: 5F‐EDMB‐PICA and EDMB‐PINACA. Drug Test Anal 15:299–313. https://doi.org/10.1002/dta.3405

Article  PubMed  CAS  Google Scholar 

Halter S, Angerer V, Röhrich J et al (2019) Cumyl-PEGACLONE: a comparatively safe new synthetic cannabinoid receptor agonist entering the NPS market? Drug Test Anal 11:347–349. https://doi.org/10.1002/dta.2545

Article  PubMed  CAS  Google Scholar 

Hess C, Schoeder CT, Pillaiyar T et al (2016) Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol 34:329–343. https://doi.org/10.1007/s11419-016-0320-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Higuera-Matas A, Miguéns M, Coria SM et al (2012) Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure. Neuropharmacology 62:1975–1984. https://doi.org/10.1016/j.neuropharm.2011.12.028

Article  PubMed  CAS  Google Scholar 

Howlett AC (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202. https://doi.org/10.1124/pr.54.2.161

Article  PubMed  CAS  Google Scholar 

Järbe TUC, Raghav JG (2016) Tripping with synthetic cannabinoids (spice): anecdotal and experimental observations in animals and man. In: Baumann MH, Glennon RA, Wiley JL (eds) Neuropharmacology of New Psychoactive substances (NPS). Springer International Publishing, Cham, pp 263–281

Chapter  Google Scholar 

Lichtman AH, Fisher J, Martin BR (2001) Precipitated cannabinoid withdrawal is reversed by D9-tetrahydrocannabinol or clonidine. https://doi.org/10.1016/s0091-3057(01)00514-7

Long JZ, Li W, Booker L et al (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5:37–44. https://doi.org/10.1038/nchembio.129

Article  PubMed  CAS  Google Scholar 

Luethi D, Liechti ME (2020) Designer drugs: mechanism of action and adverse effects. Arch Toxicol 94:1085–1133. https://doi.org/10.1007/s00204-020-02693-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lupica CR, Riegel AC, Hoffman AF (2004) Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 143:227–234. https://doi.org/10.1038/sj.bjp.0705931

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mogler L, Wilde M, Huppertz LM et al (2018) Phase I metabolism of the recently emerged synthetic cannabinoid CUMYL-PEGACLONE and detection in human urine samples. Drug Test Anal 10:886–891. https://doi.org/10.1002/dta.2352

Article  PubMed  CAS  Google Scholar 

Nash C, Glowacki L, Gerostamoulos D et al (2019) Identification of a thermal degradation product of CUMYL-PEGACLONE and its detection in biological samples. Drug Test Anal 11:1480–1485. https://doi.org/10.1002/dta.2685

Article  PubMed  CAS  Google Scholar 

Nguyen JD, Aarde SM, Vandewater SA et al (2016) Inhaled delivery of ∆9-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Neuropharmacology 109:112–120. https://doi.org/10.1016/j.neuropharm.2016.05.021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oliveira Da Cruz JF, Ioannidou C, Pagano Zottola AC et al (2021) Sex-dependent pharmacological profiles of the synthetic cannabinoid MMB‐Fubinaca. Addict Biol 26:e12940. https://doi.org/10.1111/adb.12940

Article  PubMed  CAS  Google Scholar 

Thomas BF, Lefever TW, Cortes RA et al (2017) Thermolytic degradation of Synthetic cannabinoids: Chemical exposures and Pharmacological consequences. J Pharmacol Exp Ther 361:162–171. https://doi.org/10.1124/jpet.116.238717

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trexler KR, Nass SR, Crowe MS et al (2018) Novel behavioral assays of spontaneous and precipitated THC withdrawal in mice. Drug Alcohol Depend 191:14–24. https://doi.org/10.1016/j.drugalcdep.2018.05.029

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tseng AH, Craft RM (2001) Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol 430:41–47. https://doi.org/10.1016/S0014-2999(01)01267-5

Article  PubMed  CAS  Google Scholar 

Varvel SA, Bridgen DT, Tao Q et al (2005) ∆ 9 -Tetrahydrocannbinol accounts for the Antinociceptive, hypothermic, and Cataleptic effects of Marijuana in mice. J Pharmacol Exp Ther 314:329–337. https://doi.org/10.1124/jpet.104.080739

Article  PubMed  CAS  Google Scholar 

Wiley JL, Lefever TW, Marusich JA, Craft RM (2017) Comparison of the discriminative stimulus and response rate effects of ∆9-tetrahydrocannabinol and synthetic cannabinoids in female and male rats. Drug Alcohol Depend 172:51–59. https://doi.org/10.1016/j.drugalcdep.2016.11.035

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wilson CD, Hiranita T, Fantegrossi WE (2022) Cannabimimetic effects of abused indazole-carboxamide synthetic cannabinoid receptor agonists AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA in mice: Tolerance, dependence and withdrawal. Drug Alcohol Depend 236:109468. https://doi.org/10.1016/j.drugalcdep.2022.109468

Article  PubMed  CAS  Google Scholar 

Wouters E, Walraed J, Robertson MJ et al (2020) Assessment of biased agonism among distinct synthetic cannabinoid receptor agonist scaffolds. ACS Pharmacol Transl Sci 3:285–295. https://doi.org/10.1021/acsptsci.9b00069

Article 

留言 (0)

沒有登入
gif