Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes?

Loomba, R., & Sanyal, A. J. (2013). The global NAFLD epidemic. Nature Reviews Gastroenterology & Hepatology, 10(11), 686–690.

Article  CAS  Google Scholar 

Mundi, M. S., et al. (2020). Evolution of NAFLD and its management. Nutrition in Clinical Practice, 35(1), 72–84.

Article  PubMed  Google Scholar 

Arrese, M., et al. (2016). Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences, 61, 1294–1303.

Article  PubMed  CAS  Google Scholar 

Dufour, J.-F., et al. (2022). Current therapies and new developments in NASH. Gut, 71(10), 2123–2134.

Article  PubMed  CAS  Google Scholar 

Bessone, F., Razori, M. V., & Roma, M. G. (2019). Molecular pathways of nonalcoholic fatty liver disease development and progression. Cellular and Molecular Life Sciences, 76, 99–128.

Article  PubMed  CAS  Google Scholar 

Dai, W., et al. (2017). Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a meta-analysis. Medicine, 96 (39), e8179.

Peverill, W., Powell, L. W., & Skoien, R. (2014). Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. International Journal of Molecular Sciences, 15(5), 8591–8638.

Article  PubMed  CAS  Google Scholar 

Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038–1048.

Article  PubMed  CAS  Google Scholar 

Yu, J. H., et al. (2015). Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation. Biochemical and Biophysical Research Communications, 460(3), 715–720.

Article  PubMed  CAS  Google Scholar 

Rolo, A. P., Teodoro, J. S., & Palmeira, C. M. (2012). Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 52(1), 59–69.

Article  PubMed  CAS  Google Scholar 

Cai, D., et al. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Medicine, 11(2), 183–190.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blaner, W. S., et al. (2009). Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1791(6), 467–473.

Article  PubMed  CAS  Google Scholar 

Han, S., et al. (2020). Long non-coding RNAs in liver diseases: focusing on nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease. Clinical and Molecular hepatology, 26(4), 705.

Article  PubMed  PubMed Central  Google Scholar 

Rusu, I., et al. (2022). The implications of noncoding rnas in the evolution and progression of nonalcoholic fatty liver disease (Nafld)-related hcc. International Journal of Molecular Sciences, 23(20), 12370.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Karamali, N., et al. (2024). Decoding contextual crosstalk: revealing distinct interactions between non-coding RNAs and unfolded protein response in breast cancer. Cancer Cell International, 24(1), 104.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jin, S.-S., et al. (2022). Silencing lncRNA NEAT1 reduces nonalcoholic fatty liver fat deposition by regulating the miR-139-5p/c-Jun/SREBP-1c pathway. Annals of Hepatology, 27(2), 100584.

Article  PubMed  CAS  Google Scholar 

Zhang, M., et al. (2018). The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. Journal of Hematology & Oncology, 11(1), 1–13.

Article  Google Scholar 

Bai, Y.-H., et al. (2018). LncRNA NEAT1 promotes inflammatory response and induces corneal neovascularization. Journal of Molecular Endocrinology, 61(4), 231–239.

Article  PubMed  CAS  Google Scholar 

Chen, X., et al. (2019). LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 235, 116829.

Article  PubMed  CAS  Google Scholar 

Fu, X., et al. (2019). Long non-coding RNA NEAT1 promotes steatosis via enhancement of estrogen receptor alpha-mediated AQP7 expression in HepG2 cells. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1782–1787.

Article  PubMed  CAS  Google Scholar 

Wang, X. (2018). Down‐regulation of lncRNA‐NEAT1 alleviated the non‐alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. Journal of Cellular Biochemistry, 119(2), 1567–1574.

Article  PubMed  CAS  Google Scholar 

Sun, Y., et al. (2019). LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling. Biochemical and Biophysical Research communications, 516(2), 584–590.

Article  PubMed  CAS  Google Scholar 

Yao, H., et al. (2018). Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacological Research, 131, 51–60.

Article  PubMed  CAS  Google Scholar 

Huang, H., et al. (2018). Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. The Journal of Clinical Investigation, 128(12), 5335–5350.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, W., & Qiu, K. (2022). The correlation between lncRNA NEAT1 and serum hepcidin in the peripheral blood of non-alcoholic fatty liver disease patients. American Journal of Translational Research, 14(4), 2593.

PubMed  PubMed Central  Google Scholar 

Lu, J., et al. (2022). Long non-coding RNA MALAT1: a key player in liver diseases. Frontiers in Medicine, 8, 734643.

Article  PubMed  PubMed Central  Google Scholar 

Xiang, J., et al. (2022). LncRNA MALAT1 promotes PPARα/CD36-mediated hepatic lipogenesis in nonalcoholic fatty liver disease by modulating miR-206/ARNT axis. Frontiers in Bioengineering and Biotechnology, 10, 858558.

Article  PubMed  PubMed Central  Google Scholar 

Zaiou, M. (2023). Peroxisome proliferator-activated receptor-γ as a target and regulator of epigenetic mechanisms in nonalcoholic fatty liver disease. Cells, 12(8), 1205.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, J., et al. (2019). LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Bioscience Reports, 39(7), BSR20181722.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, C., et al. (2018). Long noncoding RNA H19 interacts with polypyrimidine tract‐binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology, 67(5), 1768–1783.

Article  PubMed  CAS  Google Scholar 

Wang, H., et al. (2020). Long non‐coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes. Journal of Cellular and Molecular Medicine, 24(2), 1399–1412.

Article  PubMed  CAS  Google Scholar 

Di Mauro, S., et al. (2021). Coffee restores expression of lncRNAs involved in steatosis and fibrosis in a mouse model of NAFLD. Nutrients, 13(9), 2952.

Article  PubMed  Google Scholar 

Yuan, Y., et al. (2022). SIX5-activated LINC01468 promotes lung adenocarcinoma progression by recruiting SERBP1 to regulate SERPINE1 mRNA s

留言 (0)

沒有登入
gif