miR-378a-3p Regulates the BMP2-Smad Pathway to Promote Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells

Giorgino, R., Albano, D., & FuscoKnee, S., et al. (2023). Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. International Journal of Molecular Sciences, 24(7), 6405.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Allen, K. D., Thoma, L. M., & Golightly, Y. M. (2022). Epidemiology of osteoarthritis. Osteoarthritis Cartilage, 30(2), 184–195.

Article  PubMed  CAS  Google Scholar 

Robert, H. Q., Murray, J. N., & Pezold, R., et al. (2018). Surgical Management of Osteoarthritis of the Knee. Journal of the American Academy of Orthopaedic Surgeons, 26(9), 191–193.

Article  Google Scholar 

Wakitani, S., Kawaguchi, A., & Tokuhara, Y., et al. (2008). Present status of and future direction for articular cartilage repair. Journal of Bone and Mineral Metabolism, 26, 115–122.

Article  PubMed  Google Scholar 

Di Benedetto, P., Citak, M., & Kendoff, D., et al. (2012). Arthroscopic mosaicplasty for osteochondral Lesions of the knee: computerassisted navigation versus freehand technique. Arthroscopy, 28(9), 1290–1296.

Article  PubMed  Google Scholar 

Kom rek, J., Vali, P., & Repko, M., et al. (2010). Treatment of deep cartilage defects of the knee with autologous chondrocyte transplantation: longterm results. Acta Chirurgiae Orthopaedicae et Traumatologiae Čechoslovaca, 77(4), 291–295.

Article  Google Scholar 

Zhang, L., Chen, S., & Bao, N., et al. (2015). Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. Journal of Molecular Histology, 46(6), 467–473.

Article  PubMed  CAS  Google Scholar 

Fellows, C. R., Matta, C., & ZakanyAdipose, R., et al. (2016). Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Frontiers in Genetics, 20(7), 213.

Google Scholar 

Zamudio-Cuevas, Y., Plata-Rodríguez, R., & Fernández-Torres, J., et al. (2022). Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Molecular Biology Reports, 49(3), 2503–2517.

Article  PubMed  CAS  Google Scholar 

Chang, C. H., Chen, C. C., & Liao, C. H., et al. (2014). Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium- derived mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 102(7), 2248–2257.

Article  PubMed  Google Scholar 

Pan, J. F., Li, S., & Guo, C. A., et al. (2015). Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering. Science and Technology of Advanced Materials, 16(4), 045001.

Article  PubMed  PubMed Central  Google Scholar 

Zheng, W., Chen, Q., & Zhang, Y., et al. (2020). BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. Journal of Cellular Biochemistry, 121(4), 2851–2863.

Article  PubMed  CAS  Google Scholar 

Huang, J., Chen, C., Liang, C., et al. (2020). Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem Cells Dev. 29(7), 401–413.

Zheng, W., Gu, X., & Sun, X., et al. (2019). FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2641–2649.

Article  PubMed  CAS  Google Scholar 

Goshima, A., Etani, Y., & Hirao, M., et al. (2023). Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6-CXCR2 pathway. Osteoarthritis Cartilage, 31(12), 1581–1593.

Article  PubMed  Google Scholar 

Asahara, H. L. (2016). Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis. Journal of Bone Metabolism, 23(3), 121–127.

Article  PubMed  PubMed Central  Google Scholar 

Ho, P. T. B., Clark, I. M., & Le, L. T. T., et al. (2022). MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci, 23(13), 7167.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 42, 68–73.

Article  Google Scholar 

Saliminejad, K., Khorram Khorshid, H. R., & Soleymani Fard, S., et al. (2019). An overview of microRNAs: Biology, functions, therapeutics,and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465.

Article  PubMed  CAS  Google Scholar 

Fellows, C. R., Matta, C., & Zakany, R., et al. (2016). Bone marrow and synovial Joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics, 7, 213.

Article  PubMed  PubMed Central  Google Scholar 

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

Article  PubMed  CAS  Google Scholar 

Papaioannou, G., Kozlova, A., & Kobayashi, T. (2018). miRNA Regulation of Chondrogenesis. Current Molecular Biology Reports, 4, 208–217.

Article  Google Scholar 

Moghaddam, T., & Neshati, Z. (2019). Role of microRNAs in osteogenesis of stem cells. Journal of Cellular Biochemistry, 120, 14136–14155.

Article  PubMed  CAS  Google Scholar 

Yang, J., Qin, S., & Yi, C., et al. (2011). MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Letters, 585, 2992–2997.

Article  PubMed  CAS  Google Scholar 

Lu, J., Zhou, Z., & Sun, B., et al. (2020). MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging, 12, 18545–18560.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Penolazzi, L., Lambertini, E., & Bergamin, L. S., et al. (2018). MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells. Aging, 10, 2001–2015.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qin, Y., Liang, R., & Lu, P., et al. (2022). Depicting the Implication of miR-378a in Cancers. Technology in Cancer Research &Treatment, 21, 1–16.

Google Scholar 

Zhang, L., & Wu, Z. (2021). MicroRNA-378a-3p downregulation as a novel biomarker with poor clinical outcomes in cervical cancer. Biomedical and Environmental Sciences, 34(3), 213–221.

PubMed  CAS  Google Scholar 

Qiu, P., Xu, T., & Lu, X., et al. (2018). MicroRNA-378 regulates cell proliferation and migration by repressing RNF31 in pituitary adenoma. Oncology Letters, 15(1), 789–794.

PubMed  Google Scholar 

Peng, X.-B., Zhang, Y., & Wang, Y.-Q., et al. (2019). IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 120(4), 5570–5582.

Article  PubMed  CAS  Google Scholar 

Li, Y., Liu, Y., & Guo, Q. (2021). Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Research and Therapy, 23(1), 50.

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif