Giorgino, R., Albano, D., & FuscoKnee, S., et al. (2023). Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. International Journal of Molecular Sciences, 24(7), 6405.
Article PubMed PubMed Central CAS Google Scholar
Allen, K. D., Thoma, L. M., & Golightly, Y. M. (2022). Epidemiology of osteoarthritis. Osteoarthritis Cartilage, 30(2), 184–195.
Article PubMed CAS Google Scholar
Robert, H. Q., Murray, J. N., & Pezold, R., et al. (2018). Surgical Management of Osteoarthritis of the Knee. Journal of the American Academy of Orthopaedic Surgeons, 26(9), 191–193.
Wakitani, S., Kawaguchi, A., & Tokuhara, Y., et al. (2008). Present status of and future direction for articular cartilage repair. Journal of Bone and Mineral Metabolism, 26, 115–122.
Di Benedetto, P., Citak, M., & Kendoff, D., et al. (2012). Arthroscopic mosaicplasty for osteochondral Lesions of the knee: computerassisted navigation versus freehand technique. Arthroscopy, 28(9), 1290–1296.
Kom rek, J., Vali, P., & Repko, M., et al. (2010). Treatment of deep cartilage defects of the knee with autologous chondrocyte transplantation: longterm results. Acta Chirurgiae Orthopaedicae et Traumatologiae Čechoslovaca, 77(4), 291–295.
Zhang, L., Chen, S., & Bao, N., et al. (2015). Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. Journal of Molecular Histology, 46(6), 467–473.
Article PubMed CAS Google Scholar
Fellows, C. R., Matta, C., & ZakanyAdipose, R., et al. (2016). Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Frontiers in Genetics, 20(7), 213.
Zamudio-Cuevas, Y., Plata-Rodríguez, R., & Fernández-Torres, J., et al. (2022). Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Molecular Biology Reports, 49(3), 2503–2517.
Article PubMed CAS Google Scholar
Chang, C. H., Chen, C. C., & Liao, C. H., et al. (2014). Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium- derived mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 102(7), 2248–2257.
Pan, J. F., Li, S., & Guo, C. A., et al. (2015). Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering. Science and Technology of Advanced Materials, 16(4), 045001.
Article PubMed PubMed Central Google Scholar
Zheng, W., Chen, Q., & Zhang, Y., et al. (2020). BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. Journal of Cellular Biochemistry, 121(4), 2851–2863.
Article PubMed CAS Google Scholar
Huang, J., Chen, C., Liang, C., et al. (2020). Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem Cells Dev. 29(7), 401–413.
Zheng, W., Gu, X., & Sun, X., et al. (2019). FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2641–2649.
Article PubMed CAS Google Scholar
Goshima, A., Etani, Y., & Hirao, M., et al. (2023). Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6-CXCR2 pathway. Osteoarthritis Cartilage, 31(12), 1581–1593.
Asahara, H. L. (2016). Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis. Journal of Bone Metabolism, 23(3), 121–127.
Article PubMed PubMed Central Google Scholar
Ho, P. T. B., Clark, I. M., & Le, L. T. T., et al. (2022). MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci, 23(13), 7167.
Article PubMed PubMed Central CAS Google Scholar
Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 42, 68–73.
Saliminejad, K., Khorram Khorshid, H. R., & Soleymani Fard, S., et al. (2019). An overview of microRNAs: Biology, functions, therapeutics,and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465.
Article PubMed CAS Google Scholar
Fellows, C. R., Matta, C., & Zakany, R., et al. (2016). Bone marrow and synovial Joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics, 7, 213.
Article PubMed PubMed Central Google Scholar
Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.
Article PubMed CAS Google Scholar
Papaioannou, G., Kozlova, A., & Kobayashi, T. (2018). miRNA Regulation of Chondrogenesis. Current Molecular Biology Reports, 4, 208–217.
Moghaddam, T., & Neshati, Z. (2019). Role of microRNAs in osteogenesis of stem cells. Journal of Cellular Biochemistry, 120, 14136–14155.
Article PubMed CAS Google Scholar
Yang, J., Qin, S., & Yi, C., et al. (2011). MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Letters, 585, 2992–2997.
Article PubMed CAS Google Scholar
Lu, J., Zhou, Z., & Sun, B., et al. (2020). MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging, 12, 18545–18560.
Article PubMed PubMed Central CAS Google Scholar
Penolazzi, L., Lambertini, E., & Bergamin, L. S., et al. (2018). MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells. Aging, 10, 2001–2015.
Article PubMed PubMed Central CAS Google Scholar
Qin, Y., Liang, R., & Lu, P., et al. (2022). Depicting the Implication of miR-378a in Cancers. Technology in Cancer Research &Treatment, 21, 1–16.
Zhang, L., & Wu, Z. (2021). MicroRNA-378a-3p downregulation as a novel biomarker with poor clinical outcomes in cervical cancer. Biomedical and Environmental Sciences, 34(3), 213–221.
Qiu, P., Xu, T., & Lu, X., et al. (2018). MicroRNA-378 regulates cell proliferation and migration by repressing RNF31 in pituitary adenoma. Oncology Letters, 15(1), 789–794.
Peng, X.-B., Zhang, Y., & Wang, Y.-Q., et al. (2019). IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 120(4), 5570–5582.
Article PubMed CAS Google Scholar
Li, Y., Liu, Y., & Guo, Q. (2021). Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Research and Therapy, 23(1), 50.
留言 (0)