USP5 Stabilizes IKBKG Through Deubiquitination to Suppress Ferroptosis and Promote Growth in Non-small Cell Lung Cancer

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., & Soerjomataram, I., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians, 74(3), 229–263.

Article  Google Scholar 

Ettinger, D. S., Wood, D. E., Aisner, D. L., Akerley, W., Bauman, J. R., & Bharat, A., et al. (2022). Non-small cell lung cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 20(5), 497–530.

Article  PubMed  Google Scholar 

Saw, S. P. L., Ong, B. H., Chua, K. L. M., Takano, A., & Tan, D. S. W. (2021). Revisiting neoadjuvant therapy in non-small-cell lung cancer. The Lancet Oncology, 22(11), e501–e516.

Article  PubMed  Google Scholar 

Fan, X. (2023). LncRNA SH3BP5-AS1 regulates the proliferation and cell cycle of non-small cell lung cancer cells. Current Proteomics, 20(3), 158–168.

Article  Google Scholar 

Jiang, X., Stockwell, B. R., & Conrad, M. (2021). Ferroptosis: mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology, 22(4), 266–282.

Article  PubMed  PubMed Central  Google Scholar 

Stockwell, B. R. (2022). Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 185(14), 2401–2421.

Article  PubMed  PubMed Central  Google Scholar 

Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: the role of ferroptosis in cancer. Nature Reviews Clinical Oncology, 18(5), 280–296.

Article  PubMed  Google Scholar 

Zou, J., Wang, L., Tang, H., Liu, X., Peng, F., & Peng, C. (2021). Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. International Journal of Molecular Sciences, 22(24), 13335.

Article  PubMed  PubMed Central  Google Scholar 

Liu, J., Cheng, Y., Zheng, M., Yuan, B., Wang, Z., & Li, X., et al. (2021). Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduction and Targeted Therapy, 6(1), 28.

Article  PubMed  PubMed Central  Google Scholar 

Takehara, Y., Yashiroda, H., Matsuo, Y., Zhao, X., Kamigaki, A., & Matsuzaki, T., et al. (2021). The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. iScience, 24(3), 102145.

Article  PubMed  PubMed Central  Google Scholar 

Sun, T., Liu, Z., & Yang, Q. (2020). The role of ubiquitination and deubiquitination in cancer metabolism. Molecular Cancer, 19(1), 146.

Article  PubMed  PubMed Central  Google Scholar 

Yan, B., Guo, J., Deng, S., Chen, D., & Huang, M. (2023). A pan-cancer analysis of the role of USP5 in human cancers. Scientific Reports, 13(1), 8972.

Article  PubMed  PubMed Central  Google Scholar 

Xiao, X., Shi, J., He, C., Bu, X., Sun, Y., & Gao, M., et al. (2023). ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nature Communications, 14(1), 2859.

Article  PubMed  PubMed Central  Google Scholar 

Meng, J., Ai, X., Lei, Y., Zhong, W., Qian, B., & Qiao, K., et al. (2019). USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics, 9(2), 573–587.

Article  PubMed  PubMed Central  Google Scholar 

Wang, Q., Chen, F., Yang, N., Xu, L., Yu, X., & Wu, M., et al. (2023). DEPDC1B-mediated USP5 deubiquitination of β-catenin promotes breast cancer metastasis by activating the wnt/β-catenin pathway. American Journal of Physiology, 325(4), C833–C848.

Article  PubMed  PubMed Central  Google Scholar 

Pan, J., Qiao, Y., Chen, C., Zang, H., Zhang, X., & Qi, F., et al. (2021). USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death & Disease, 12(11), 1051.

Article  Google Scholar 

Zhang, Z., Cui, Z., Xie, Z., Li, C., Xu, C., & Guo, X., et al. (2021). Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Translation Lung Cancer Research, 10(10), 3995–4011.

Article  Google Scholar 

Berr, A. L., Wiese, K., Dos Santos, G., Koch, C. M., Anekalla, K. R., & Kidd, M., et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non-small cell lung cancer. Oncogene, 42(25), 2074–2087.

Article  PubMed  PubMed Central  Google Scholar 

Lee, Y. J., Shin, K. J., Jang, H. J., Ryu, J. S., Lee, C. Y., & Yoon, J. H., et al. (2023). GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Developmental Cell, 58(4), 320–334.e328.

Article  PubMed  Google Scholar 

Shan, C., Ou, D., Xiong, Y., Cheng, H., Song, C., & Li, M., et al. (2023). Molecular mechanism of anti-inflammatory effects of the proteasome inhibitor MG-132 on Con A-induced acute liver injury in mice. Research in Veterinary Science, 156, 60–65.

Article  PubMed  Google Scholar 

Cao, L., Liu, H., Huang, C., Guo, C., Zhao, L., & Gao, C., et al. (2023). USP5 knockdown alleviates lung cancer progression via activating PARP1-mediated mTOR signaling pathway. Biology Direct, 18(1), 16.

Article  PubMed  PubMed Central  Google Scholar 

Wu, S., Zhu, C., Tang, D., Dou, Q. P., Shen, J., & Chen, X. (2021). The role of ferroptosis in lung cancer. Biomarker Research, 9(1), 82.

Article  PubMed  PubMed Central  Google Scholar 

Tak, J., Joo, M. S., Kim, Y. S., Park, H. W., Lee, C. H., & Park, G. C., et al. (2024). Dual regulation of NEMO by Nrf2 and miR-125a inhibits ferroptosis and protects liver from endoplasmic reticulum stress-induced injury. Theranostics, 14(5), 1841–1859.

Article  PubMed  PubMed Central  Google Scholar 

Moeng, S., Seo, H. A., Hwang, C. Y., Cipolla, G. A., Lee, D. J., & Kuh, H. J., et al. (2018). MicroRNA-107 targets IKBKG and sensitizes A549 cells to parthenolide. Anti Cancer Research, 38(11), 6309–6316.

Google Scholar 

Gao, S. T., Xin, X., Wang, Z. Y., Hu, Y. Y., & Feng, Q. (2024). USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Molecular and Cellular Probes, 73, 101944.

Article  PubMed  Google Scholar 

Zhang, C., Liu, X., Jin, S., Chen, Y., & Guo, R. (2022). Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Molecular Cancer, 21(1), 47.

Article  PubMed  PubMed Central  Google Scholar 

Li, Y., Zhang, L., & Dong, R. (2023). Research progress in regulation of ferroptosis by epigallocatechin-3- gallate in tumor cells. Letters in Drug Design & Discovery, 20(12), 1877–1883.

Article  Google Scholar 

Deng, J., Lin, X., Qin, J., Li, Q., Zhang, Y., & Zhang, Q., et al. (2024). SPTBN2 suppresses ferroptosis in NSCLC cells by facilitating SLC7A11 membrane trafficking and localization. Redox Biology, 70, 103039.

Article  PubMed  PubMed Central  Google Scholar 

Hu, Q., Dai, J., Zhang, Z., Yu, H., Zhang, J., & Zhu, X., et al. (2023). ASS1-mediated reductive carboxylation of cytosolic glutamine confers ferroptosis resistance in cancer cells. Cancer Research, 83(10), 1646–1665.

Article  PubMed  Google Scholar 

Meng, C., Zhan, J., Chen, D., Shao, G., Zhang, H., & Gu, W., et al. (2021). The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene, 40(9), 1706–1720.

Article  PubMed  Google Scholar 

Tao, R., Liu, Z., Zhang, Z., & Zhang, Z. (2024). USP3 promotes cisplatin resistance in non-small cell lung cancer cells by suppressing ACOT7-regulated ferroptosis. Anticancer Drugs, 35(6), 483–491.

Article  PubMed  Google Scholar 

Xia, P., Zhang, H., Lu, H., Xu, K., Jiang, X., & Jiang, Y., et al. (2023). METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Communications, 43(3), 338–364.

Article  PubMed  PubMed Central  Google Scholar 

Xue, S., Wu, W., Wang, Z., Lu, G., Sun, J., & Jin, X., et al. (2020). USP5 promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/β-catenin pathway. Frontiers in Pharmacology, 11, 668.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif