Tomuleasa, C., Soritau, O., Rus-Ciuca, D., Pop, T., Todea, D., Mosteanu, O. & Irimie, A. (2010). Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointestin Liver Dis, 19(1), 61–7.
Vaz, A. P., Ponnusamy, M. P., & Batra, S. K. (2013). Cancer stem cells and therapeutic targets: An emerging field for cancer treatment. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-012-0095-x.
Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115. https://doi.org/10.1038/nature05384.
Anwanwan, D., Singh, S. K., Singh, S., Saikam, V., & Singh, R. (2020). Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta. Reviews on Cancer, 1873(1), 188314 https://doi.org/10.1016/J.BBCAN.2019.188314.
Lee, T. K. W., Castilho, A., Cheung, V. C. H., Tang, K. H., Ma, S., & Ng, I. O. L. (2011). CD24 + Liver Tumor-Initiating Cells Drive Self-Renewal and Tumor Initiation through STAT3-Mediated NANOG Regulation. Cell Stem Cell, 9(1), 50–63. https://doi.org/10.1016/j.stem.2011.06.005.
Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., & Wang, X. (1997). Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science, 275(5303), 1129–1132. https://doi.org/10.1126/science.275.5303.1129.
Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12. https://doi.org/10.3389/FONC.2022.985363.
Oltvai, Z. N., Milkman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 Heterodimerizes In Vivo with a Conserved Homolog, Bax, That Accelerates Programed Cell Death. Cell 74, 609–619.
Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell. https://doi.org/10.1016/j.cell.2010.03.015.
Lee, D.-H., Ha, J.-H., Kim, Y., Jang, M., Park, S. J., Yoon, H. S., & Chi, S.-W. (2014). A conserved mechanism for binding of p53 DNA-binding domain and anti-apoptotic Bcl-2 family proteins. Molecules and Cells, 37(3), 264–269. https://doi.org/10.14348/molcells.2014.0001.
Article PubMed PubMed Central Google Scholar
Kudelski, J., Tokarzewicz, A., Gudowska-Sawczuk, M., Mroczko, B., Chłosta, P., Bruczko-Goralewska, M., Młynarczyk, G. (2023). The Significance of Matrix Metalloproteinase 9 (MMP-9) and Metalloproteinase 2 (MMP-2) in Urinary Bladder Cancer. Biomedicines, 11(3). https://doi.org/10.3390/BIOMEDICINES11030956.
di Carlo, A., Terracciano, D., Mariano, A., & Macchia, V. (2006). Urinary gelatinase activities (matrix metalloproteinases 2 and 9) in human bladder tumors. Oncology Reports, 15(5), 1321–1326. https://api.semanticscholar.org/CorpusID:28602420.
Kanayama, H., Yokota, K., Kurokawa, Y., Murakami, Y., Nishitani, M., & Kagawa, S. (1998). Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer. Cancer, 82(7), 1359–1366.
Davies, B., Waxman, J., Wasan, H., Abel, P., Williams, G., Krausz, T., & Balkwill, F. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53(22), 5365–5369.
Choi, Y. D., Cho, N. H., Ahn, H. S., Cho, K. S., Cho, S. Y., & Yang, W. J. (2007). Matrix metalloproteinase expression in the recurrence of superficial low grade bladder transitional cell carcinoma. The Journal of Urology, 177(3), 1174–1178. https://doi.org/10.1016/j.juro.2006.10.031.
Li, H., Qiu, Z., Li, F., & Wang, C. (2017). The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Letters, 14(5), 5865 https://doi.org/10.3892/OL.2017.6924.
Article PubMed PubMed Central Google Scholar
Huang, M., Lu, J. J., & Ding, J. (2021). Natural Products in Cancer Therapy: Past, Present and Future. Natural Products and Bioprospecting, 11(1), 5–13. https://doi.org/10.1007/S13659-020-00293-7/FIGURES/4.
Article PubMed PubMed Central Google Scholar
Kung, C.-P., Budina, A., Balaburski, G., Bergenstock, M. K., & Murphy, M. (2011). Autophagy in tumor suppression and cancer therapy. Critical ReviewsTM. in Eukaryotic Gene Expression, 21(1), 71–100. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i1.50.
Thorburn, A. (2008). Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis: An International Journal on Programmed Cell Death, 13(1), 1–9. https://doi.org/10.1007/s10495-007-0154-9.
Yamamoto, M., Suzuki, S. O., & Himeno, M. (2010). Resveratrol-induced autophagy in human U373 glioma cells. Oncology Letters, 1(3), 489–493. https://doi.org/10.3892/ol_00000086.
Article PubMed PubMed Central Google Scholar
Xu, X. L., Deng, S. L., Lian, Z. X., & Yu, K. (2021). Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants, 10(11), 1718 https://doi.org/10.3390/ANTIOX10111718.
Article PubMed PubMed Central Google Scholar
Liang, Y., Xu, M.-L., Gao, X., Wang, Y., Zhang, L.-N., Li, Y.-C., & Zhang, Nan (2023). Resveratrol improves ovarian state by inhibiting apoptosis of granulosa cells. GynecoloGical EndocrinoloGy, 39(1), 2181652 https://doi.org/10.1080/09513590.2023.2181652.
Shinojima, N., Yokoyama, T., Kondo, Y., & Kondo, S. (2007). Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy, 3(6), 635–637. https://doi.org/10.4161/auto.4916.
Zhang, D.-M., Liu, J.-S., Deng, L.-J., Chen, M.-F., Yiu, A., Cao, H.-H., & Ye, W.-C. (2013). Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis, 34(6), 1331–1342. https://doi.org/10.1093/carcin/bgt060.
Yang, Z. J., Huang, S. Y., Zhou, D. D., Xiong, R. G., Zhao, C. N., Fang, A. P., & Zhu, H. L. (2022). Effects and Mechanisms of Curcumin for the Prevention and Management of Cancers: An Updated Review. Antioxidants, 11(8), 1481 https://doi.org/10.3390/ANTIOX11081481.
Article PubMed Central Google Scholar
Olotu, F., Agoni, C., Soremekun, O., & Soliman, M. E. S. (2020). An Update on the Pharmacological Usage of Curcumin: Has it Failed in the Drug Discovery Pipeline? Cell Biochemistry and Biophysics, 78(3), 267–289. https://doi.org/10.1007/S12013-020-00922-5.
Li, H., Jin, X., Zhang, Z., Xing, Y., & Kong, X. (2013). Inhibition of autophagy enhances apoptosis induced by the PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells. Cell Biochemistry and Function, 31(5), 427–433. https://doi.org/10.1002/cbf.2917.
Peng, Y., Wang, Y., Zhou, C., Mei, W., & Zeng, C. (2022). PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Frontiers in Oncology, 12, 819128 https://doi.org/10.3389/FONC.2022.819128/BIBTEX.
Article PubMed PubMed Central Google Scholar
Park, J. Y., Kang, S. E., Ahn, K. S., Um, J. Y., Yang, W. M., Yun, M., & Lee, S. G. (2020). Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. Journal of Cancer, 11(9), 2552–2559. https://doi.org/10.7150/JCA.37975.
Article PubMed PubMed Central Google Scholar
Li, R., Zou, X., Huang, H., Yu, Y., Zhang, H., Liu, P., & Shang, Y. (2020). HMGB1/PI3K/Akt/mTOR Signaling Participates in the Pathological Process of Acute Lung Injury by Regulating the Maturation and Function of Dendritic Cells. Frontiers in Immunology, 11, 544585 https://doi.org/10.3389/FIMMU.2020.01104/BIBTEX.
Pinzi, L., & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20(18), 4331 https://doi.org/10.3390/IJMS20184331.
Article PubMed PubMed Central Google Scholar
Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129 https://doi.org/10.1016/J.NEURON.2018.08.011.
Article PubMed PubMed Central Google Scholar
Gomez-Gutierrez, J. G., Bhutiani, N., McNally, M. W., Chuong, P., Yin, W., Jones, M. A., & McNally, L. R. (2021). The neutral red assay can be used to evaluate cell viability during autophagy or in an acidic microenvironment in vitro. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission, 96(4), 302–310. https://doi.org/10.1080/10520295.2020.1802065.
Segeritz, C.-P., & Vallier, L. (2017). Cell Culture. In Basic Science Methods for Clinical Researchers (pp. 151–172). Elsevier. https://doi.org/10.1016/B978-0-12-803077-6.00009-6.
Bittkau, K. S., Dörschmann, P., Blümel, M., Tasdemir, D., Roider, J., Klettner, A., & Alban, S. (2019). Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Marine Drugs, 17(8), 441 https://doi.org/10.3390/md17080441.
留言 (0)