Davis, A. S., Viera, A. J., & Mead, M. D. (2014). Leukemia: An overview for primary care. American Family Physician, 89(9), 731–738.
Dong, Y., Shi, O., Zeng, Q., Lu, X., Wang, W., Li, Y., et al. (2020). Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Experimental Hematology & Oncology, 9, 14.
Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., et al. (2016). Cancer treatment and survivorship statistics, 2016. CA: A Cancer Journal for Clinicians, 66(4), 271–289.
Jain, D., Russell, R. R., Schwartz, R. G., Panjrath, G. S., & Aronow, W. (2017). Cardiac complications of cancer therapy: Pathophysiology, identification, prevention, treatment, and future directions. Current Cardiology Reports, 19(5), 36.
Lemke, J., von Karstedt, S., Zinngrebe, J., & Walczak, H. (2014). Getting TRAIL back on track for cancer therapy. Cell Death & Differentiation, 21(9), 1350–1364.
Yuan, X., Gajan, A., Chu, Q., Xiong, H., Wu, K., & Wu, G. S. (2018). Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer and Metastasis Reviews, 37(4), 733–748.
Article PubMed CAS Google Scholar
Snajdauf, M., Havlova, K., Vachtenheim, J., Ozaniak, A., Lischke, R., Bartunkova, J., et al. (2021). The TRAIL in the treatment of human cancer: An update on clinical trials. Frontiers in Molecular Biosciences, 8, 628332.
Article PubMed PubMed Central CAS Google Scholar
Trivedi, R., & Mishra, D. P. (2015). Trailing TRAIL resistance: Novel targets for TRAIL sensitization in cancer cells. Frontiers in Oncology, 5, 69.
Article PubMed PubMed Central Google Scholar
Monleón, I., Martínez-Lorenzo, M. J., Monteagudo, L., Lasierra, P., Taulés, M., Iturralde, M., et al. (2001). Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. Journal of Immunology, 167(12), 6736–6744.
Refaat, A., Abd-Rabou, A., & Reda, A. (2014). TRAIL combinations: The new “trail” for cancer therapy (Review). Oncology Letters, 7(5), 1327–1332.
Article PubMed PubMed Central CAS Google Scholar
Testa, U. (2010). TRAIL/TRAIL-R in hematologic malignancies. Journal of Cellular Biochemistry, 110(1), 21–34.
Article PubMed CAS Google Scholar
Guo, Z. L., Li, J. Z., Ma, Y. Y., Qian, D., Zhong, J. Y., Jin, M. M., et al. (2018). Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Molecular and Cell Biology, 19(1), 29.
Liu, N., Chen, T., Wang, X., Yang, D., Xue, B., & Zhu, H. (2015). Msi1 confers resistance to TRAIL by activating ERK in liver cancer cells. FEBS Letters, 589(8), 897–903.
Article PubMed CAS Google Scholar
Moon, D. O., Park, S. Y., Choi, Y. H., Ahn, J. S., & Kim, G. Y. (2011). Guggulsterone sensitizes hepatoma cells to TRAIL-induced apoptosis through the induction of CHOP-dependent DR5: Involvement of ROS-dependent ER-stress. Biochemical Pharmacology, 82(11), 1641–1650.
Article PubMed CAS Google Scholar
Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death & Differentiation, 11(4), 381–389.
Yamaguchi, H., & Wang, H. G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. Journal of Biological Chemistry, 279(44), 45495–45502.
Article PubMed CAS Google Scholar
Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898–3941.
Article PubMed PubMed Central CAS Google Scholar
Ceccacci, E., & Minucci, S. (2016). Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia. British Journal of Cancer, 114(6), 605–611.
Article PubMed PubMed Central CAS Google Scholar
Bubna, A. K. (2015). Vorinostat-an overview. Indian Journal of Dermatology, 60(4), 419.
Article PubMed PubMed Central Google Scholar
Wawruszak, A., Borkiewicz, L., Okon, E., Kukula-Koch, W., Afshan, S., & Halasa, M. (2021). Vorinostat (SAHA) and breast cancer: An overview. Cancers (Basel), 13(18), 4700.
Thapa, B., Kc, R., & Uludağ, H. (2020). TRAIL therapy and prospective developments for cancer treatment. Journal of Controlled Release, 326(Oct), 335–349.
Article PubMed CAS Google Scholar
Takeda, K., Smyth, M. J., Cretney, E., Hayakawa, Y., Kayagaki, N., Yagita, H., et al. (2002). Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. Journal of Experimental Medicine, 195(2), 161–169.
Article PubMed PubMed Central CAS Google Scholar
Lim, B., Greer, Y., Lipkowitz, S., & Takebe, N. (2019). Novel apoptosis-inducing agents for the treatment of cancer, a new arsenal in the toolbox. Cancers (Basel) 11(8).
Zhang, L., & Fang, B. (2005). Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Therapy, 12(3), 228–237.
Article PubMed CAS Google Scholar
Twomey, J. D., Kim, S. R., Zhao, L., Bozza, W. P., & Zhang, B. (2015). Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resistance Updates, 19, 13–21.
Zlotorynski, E. (2014). Apoptosis. DR5 unfolds ER stress. Nature Reviews Molecular Cell Biology, 15(8), 498–499.
Franco, A. V., Zhang, X. D., Van Berkel, E., Sanders, J. E., Zhang, X. Y., Thomas, W. D., et al. (2001). The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. Journal of Immunology, 166(9), 5337–5345.
Feng, X., Jiang, J., Shi, S., Xie, H., Zhou, L., & Zheng, S. (2016). Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. International Journal of Oncology, 49(6), 2600–2610.
Article PubMed CAS Google Scholar
Thanaketpaisarn, O., Waiwut, P., Sakurai, H., & Saiki, I. (2011). Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. International Journal of Oncology, 39(1), 279–285.
Dong, Y., Yin, S., Li, J., Jiang, C., Ye, M., & Hu, H. (2011). Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis, 16(4), 394–403.
Article PubMed CAS Google Scholar
Huang, S., & Sinicrope, F. A. (2010). Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Molecular Cancer Therapeutics, 9(3), 742–750.
Article PubMed PubMed Central CAS Google Scholar
Lee, T. J., Lee, J. T., Park, J. W., & Kwon, T. K. (2006). Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochemical and Biophysical Research Communications, 351(4), 1024–1030.
Article PubMed CAS Google Scholar
Chen, K. F., Tai, W. T., Liu, T. H., Huang, H. P., Lin, Y. C., Shiau, C. W., et al. (2010). Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clinical Cancer Research, 16(21), 5189–5199.
Article PubMed CAS Google Scholar
Safa, A. R. (2012). c-FLIP, a master anti-apoptotic regulator. Experimental Oncology, 34(3), 176–184.
留言 (0)