Study of TRAIL and SAHA Co-Treatment on Leukemia K562 Cell Line

Davis, A. S., Viera, A. J., & Mead, M. D. (2014). Leukemia: An overview for primary care. American Family Physician, 89(9), 731–738.

PubMed  Google Scholar 

Dong, Y., Shi, O., Zeng, Q., Lu, X., Wang, W., Li, Y., et al. (2020). Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Experimental Hematology & Oncology, 9, 14.

Article  Google Scholar 

Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., et al. (2016). Cancer treatment and survivorship statistics, 2016. CA: A Cancer Journal for Clinicians, 66(4), 271–289.

PubMed  Google Scholar 

Jain, D., Russell, R. R., Schwartz, R. G., Panjrath, G. S., & Aronow, W. (2017). Cardiac complications of cancer therapy: Pathophysiology, identification, prevention, treatment, and future directions. Current Cardiology Reports, 19(5), 36.

Article  PubMed  Google Scholar 

Lemke, J., von Karstedt, S., Zinngrebe, J., & Walczak, H. (2014). Getting TRAIL back on track for cancer therapy. Cell Death & Differentiation, 21(9), 1350–1364.

Article  CAS  Google Scholar 

Yuan, X., Gajan, A., Chu, Q., Xiong, H., Wu, K., & Wu, G. S. (2018). Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer and Metastasis Reviews, 37(4), 733–748.

Article  PubMed  CAS  Google Scholar 

Snajdauf, M., Havlova, K., Vachtenheim, J., Ozaniak, A., Lischke, R., Bartunkova, J., et al. (2021). The TRAIL in the treatment of human cancer: An update on clinical trials. Frontiers in Molecular Biosciences, 8, 628332.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trivedi, R., & Mishra, D. P. (2015). Trailing TRAIL resistance: Novel targets for TRAIL sensitization in cancer cells. Frontiers in Oncology, 5, 69.

Article  PubMed  PubMed Central  Google Scholar 

Monleón, I., Martínez-Lorenzo, M. J., Monteagudo, L., Lasierra, P., Taulés, M., Iturralde, M., et al. (2001). Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. Journal of Immunology, 167(12), 6736–6744.

Article  Google Scholar 

Refaat, A., Abd-Rabou, A., & Reda, A. (2014). TRAIL combinations: The new “trail” for cancer therapy (Review). Oncology Letters, 7(5), 1327–1332.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Testa, U. (2010). TRAIL/TRAIL-R in hematologic malignancies. Journal of Cellular Biochemistry, 110(1), 21–34.

Article  PubMed  CAS  Google Scholar 

Guo, Z. L., Li, J. Z., Ma, Y. Y., Qian, D., Zhong, J. Y., Jin, M. M., et al. (2018). Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Molecular and Cell Biology, 19(1), 29.

Article  CAS  Google Scholar 

Liu, N., Chen, T., Wang, X., Yang, D., Xue, B., & Zhu, H. (2015). Msi1 confers resistance to TRAIL by activating ERK in liver cancer cells. FEBS Letters, 589(8), 897–903.

Article  PubMed  CAS  Google Scholar 

Moon, D. O., Park, S. Y., Choi, Y. H., Ahn, J. S., & Kim, G. Y. (2011). Guggulsterone sensitizes hepatoma cells to TRAIL-induced apoptosis through the induction of CHOP-dependent DR5: Involvement of ROS-dependent ER-stress. Biochemical Pharmacology, 82(11), 1641–1650.

Article  PubMed  CAS  Google Scholar 

Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death & Differentiation, 11(4), 381–389.

Article  CAS  Google Scholar 

Yamaguchi, H., & Wang, H. G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. Journal of Biological Chemistry, 279(44), 45495–45502.

Article  PubMed  CAS  Google Scholar 

Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898–3941.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ceccacci, E., & Minucci, S. (2016). Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia. British Journal of Cancer, 114(6), 605–611.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bubna, A. K. (2015). Vorinostat-an overview. Indian Journal of Dermatology, 60(4), 419.

Article  PubMed  PubMed Central  Google Scholar 

Wawruszak, A., Borkiewicz, L., Okon, E., Kukula-Koch, W., Afshan, S., & Halasa, M. (2021). Vorinostat (SAHA) and breast cancer: An overview. Cancers (Basel), 13(18), 4700.

Thapa, B., Kc, R., & Uludağ, H. (2020). TRAIL therapy and prospective developments for cancer treatment. Journal of Controlled Release, 326(Oct), 335–349.

Article  PubMed  CAS  Google Scholar 

Takeda, K., Smyth, M. J., Cretney, E., Hayakawa, Y., Kayagaki, N., Yagita, H., et al. (2002). Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. Journal of Experimental Medicine, 195(2), 161–169.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lim, B., Greer, Y., Lipkowitz, S., & Takebe, N. (2019). Novel apoptosis-inducing agents for the treatment of cancer, a new arsenal in the toolbox. Cancers (Basel) 11(8).

Zhang, L., & Fang, B. (2005). Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Therapy, 12(3), 228–237.

Article  PubMed  CAS  Google Scholar 

Twomey, J. D., Kim, S. R., Zhao, L., Bozza, W. P., & Zhang, B. (2015). Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resistance Updates, 19, 13–21.

Article  PubMed  Google Scholar 

Zlotorynski, E. (2014). Apoptosis. DR5 unfolds ER stress. Nature Reviews Molecular Cell Biology, 15(8), 498–499.

Article  PubMed  Google Scholar 

Franco, A. V., Zhang, X. D., Van Berkel, E., Sanders, J. E., Zhang, X. Y., Thomas, W. D., et al. (2001). The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. Journal of Immunology, 166(9), 5337–5345.

Article  CAS  Google Scholar 

Feng, X., Jiang, J., Shi, S., Xie, H., Zhou, L., & Zheng, S. (2016). Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. International Journal of Oncology, 49(6), 2600–2610.

Article  PubMed  CAS  Google Scholar 

Thanaketpaisarn, O., Waiwut, P., Sakurai, H., & Saiki, I. (2011). Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. International Journal of Oncology, 39(1), 279–285.

PubMed  CAS  Google Scholar 

Dong, Y., Yin, S., Li, J., Jiang, C., Ye, M., & Hu, H. (2011). Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis, 16(4), 394–403.

Article  PubMed  CAS  Google Scholar 

Huang, S., & Sinicrope, F. A. (2010). Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Molecular Cancer Therapeutics, 9(3), 742–750.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee, T. J., Lee, J. T., Park, J. W., & Kwon, T. K. (2006). Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochemical and Biophysical Research Communications, 351(4), 1024–1030.

Article  PubMed  CAS  Google Scholar 

Chen, K. F., Tai, W. T., Liu, T. H., Huang, H. P., Lin, Y. C., Shiau, C. W., et al. (2010). Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clinical Cancer Research, 16(21), 5189–5199.

Article  PubMed  CAS  Google Scholar 

Safa, A. R. (2012). c-FLIP, a master anti-apoptotic regulator. Experimental Oncology, 34(3), 176–184.

PubMed  PubMed Central 

留言 (0)

沒有登入
gif