Microfluidic-based systems for the management of diabetes

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.

Article  PubMed  Google Scholar 

Prevention CfDCa. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States 2022 [Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html].

Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors. 2019;19:800. https://doi.org/10.3390/s19040800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Association AD. Economic costs of diabetes in the US in 2017. Diabetes Care. 2018;41:917–28. https://doi.org/10.2337/dci18-0007.

Article  Google Scholar 

Stokes A, Preston SH. Deaths attributable to diabetes in the United States: comparison of data sources and estimation approaches. PLoS ONE. 2017;12:e0170219. https://doi.org/10.1371/journal.pone.0170219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy S, Xu J, Kochanek K, Deaths. Final data for 2010. National vital statistics reports. National Center for Health Statistics. 2013;61.

Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Fard HH, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10:98. https://doi.org/10.34172/hpp.2020.18.

Article  PubMed  PubMed Central  Google Scholar 

Umpierrez GE, Klonoff DC. Diabetes technology update: use of insulin pumps and continuous glucose monitoring in the hospital. Diabetes Care. 2018;41:1579–89. https://doi.org/10.2337/dci18-0002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Sandhu SV, Bansal H, Sharma D. Comparison of salivary and serum glucose levels in diabetic patients. J Diabetes Sci Technol. 2014;9:91–6. https://doi.org/10.1177/1932296814552673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang L, Chang SJ, Chen C-J, Liu J-T. Non-invasive blood glucose monitoring technology: a review. Sensors. 2020;20:6925. https://doi.org/10.3390/s20236925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kownacka AE, Vegelyte D, Joosse M, Anton N, Toebes BJ, Lauko J, Buzzacchera I, Lipinska K, Wilson DA, Geelhoed-Duijvestijn N. Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating. Biomacromolecules. 2018;19:4504–11. https://doi.org/10.1021/acs.biomac.8b01429.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olczuk D, Priefer R. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes Metab Syndr. 2018;12:181–7. https://doi.org/10.1016/j.dsx.2017.09.005.

Article  PubMed  Google Scholar 

Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors. 2017;17:1866. https://doi.org/10.3390/s17081866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei T-T, Tsai H-Y, Yang C-C, Hsiao W-T, Huang K-C, editors. Noninvasive glucose evaluation by human skin oxygen saturation level. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings; 2016: IEEE. https://doi.org/10.1109/I2MTC.2016.7520571.

Asaduzzaman A, Samadarsinee S, Chidella KK, editors. Simulating multisensor noninvasive blood glucose monitoring systems. SoutheastCon 2016; 2016: IEEE. https://doi.org/10.1109/SECON.2016.7506765.

Bolla AS, Priefer R. Blood glucose monitoring-an overview of current and future non-invasive devices. Diabetes Metabolic Syndrome: Clin Res Rev. 2020;14:739–51. https://doi.org/10.1016/j.dsx.2020.05.016.

Article  Google Scholar 

Siddiqui SA, Zhang Y, Lloret J, Song H, Obradovic Z. Pain-free blood glucose monitoring using wearable sensors: recent advancements and future prospects. IEEE Rev Biomed Eng. 2018;11:21–35. https://doi.org/10.1109/RBME.2018.2822301.

Article  PubMed  Google Scholar 

Bantle JP, Thomas W. Glucose measurement in patients with diabetes mellitus with dermal interstitial fluid. J Lab Clin Med. 1997;130. https://doi.org/10.1016/S0022-2143(97)90044-5.:436– 41.

Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal Chem. 2019;91:3778–83. https://doi.org/10.1021/acs.analchem.8b05928.

Article  CAS  PubMed  Google Scholar 

Urakami T, Morimoto S, Nitadori Y, Harada K, Owada M, Kitagawa T. Urine glucose screening program at schools in Japan to detect children with diabetes and its outcome-incidence and clinical characteristics of childhood type 2 diabetes in Japan. Pediatr Res. 2007;61:141–5. https://doi.org/10.1203/pdr.0b013e31802d8a69.

Article  PubMed  Google Scholar 

Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J Diabetes Sci Technol. 2015;9:169–76. https://doi.org/10.1177/1932296814567227.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lapolla A, Mosca A, Fedele D. The general use of glycated haemoglobin for the diagnosis of diabetes and other categories of glucose intolerance: still a long way to go. Nutr Metab Cardiovas Dis. 2011;21:467–75. https://doi.org/10.1016/j.numecd.2011.02.006.

Article  CAS  Google Scholar 

Sehrawat T, Jindal A, Kohli P, Thour A, Kaur J, Sachdev A, Gupta Y. Utility and limitations of glycated hemoglobin (HbA1c) in patients with liver cirrhosis as compared with oral glucose tolerance test for diagnosis of diabetes. Diabetes Ther. 2018;9:243–51. https://doi.org/10.1007/s13300-017-0362-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen N, Sabhachandani P, Sarkar S, Kahanovitz L, Lautsch N, Russell SJ, Konry T. Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Microchim Acta. 2017;184:835–41. https://doi.org/10.1007/s00604-017-2072-z.

Article  CAS  Google Scholar 

Gerasimov JY, Schaefer CS, Yang W, Grout RL, Lai RY. Development of an electrochemical insulin sensor based on the insulin-linked polymorphicregion. Biosens Bioelectron. 2013;42:62–8. https://doi.org/10.1016/j.bios.2012.10.046.

Article  CAS  PubMed  Google Scholar 

Zhu W, Xu L, Zhu C, Li B, Xiao H, Jiang H, Zhou X. Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochim Acta. 2016;218:91–100. https://doi.org/10.1016/j.electacta.2016.09.108.

Article  CAS  Google Scholar 

Pinho D, Faustino V, Catarino SO, Pereira AI, Minas G, Pinho FT, Lima R. Label-free multi-step microfluidic device for mechanical characterization of blood cells: diabetes type II. Micro Nano Eng. 2022;16:100149. https://doi.org/10.1016/j.mne.2022.100149.

Article  CAS  Google Scholar 

Chang H-Y, Li X, Karniadakis GE. Modeling of biomechanics and biorheology of red blood cells in type 2 diabetes mellitus. Biophys J. 2017;113:481–90. https://doi.org/10.1016/j.bpj.2017.06.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moutzouri A, Athanassiou G, Dimitropoulou D, Skoutelis A, Gogos C. Severe sepsis and diabetes mellitus have additive effects on red blood cell deformability. J Infect. 2008;57:147–51. https://doi.org/10.1016/j.jinf.2008.04.004.

Article  CAS  PubMed  Google Scholar 

Agrawal R, Smart T, Nobre-Cardoso J, Richards C, Bhatnagar R, Tufail A, Shima D, Jones H, Pavesio P. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci Rep. 2016;6:15873. https://doi.org/10.1038/srep15873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang K, Yang X, Gao C, Hua C, Hong C, Zhu L. A Novel Microfluidic device for the Neutrophil Functional phenotype analysis: effects of glucose and its derivatives AGEs. Micromachines. 2021;12:944. https://doi.org/10.3390/mi12080944.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif