Ti3C2 (MXene), an advanced carrier system: role in photothermal, photoacoustic, enhanced drugs delivery and biological activity in cancer therapy

Akens MK, Hardisty MR, Wilson BC, Schwock J, Whyne CM, Burch S, et al. Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Res Treat. 2010;119:325–33.

Article  CAS  PubMed  Google Scholar 

Watanabe K, Kuramitsu S, Posey AD, June CH. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T Cell Biology. Front Immunol. 2018;9:9.

Article  Google Scholar 

Stein F, Schielke A, Barcikowski S, Rehbock C. Influence of gold/silver ratio in ablative nanoparticles on their interaction with aptamers and functionality of the obtained conjugates. Bioconjug Chem. 2021;32:2439–46.

Article  CAS  PubMed  Google Scholar 

Zhang W, Taheri-Ledari R, Hajizadeh Z, Zolfaghari E, Ahghari MR, Maleki A, et al. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale. 2020;12:3855–70.

Article  CAS  PubMed  Google Scholar 

Guilbaud-Chéreau C, Dinesh B, Schurhammer R, Collin D, Bianco A, Ménard-Moyon C. Protected amino acid–based hydrogels incorporating carbon nanomaterials for near-infrared irradiation-triggered drug release. ACS Appl Mater Interfaces. 2019;11:13147–57.

Article  PubMed  Google Scholar 

Saha A, Basiruddin S, Maity AR, Jana NR. Synthesis of nanobioconjugates with a controlled average number of biomolecules between 1 and 100 per nanoparticle and observation of multivalency dependent interaction with proteins and cells. Langmuir. 2013;29:13917–24.

Article  CAS  PubMed  Google Scholar 

Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, et al. Multifunctional two-dimensional core–shell MXene@gold nanocomposites for enhanced photo–radio combined therapy in the second biological window. ACS Nano. 2019;13:284–94.

Article  CAS  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Lorscheider M, Gaudin A, Nakhlé J, Veiman K-L, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12:55–76.

Article  CAS  PubMed  Google Scholar 

Trojan J. Cabozantinib for the treatment of advanced hepatocellular carcinoma: current data and future perspectives. Drugs. 2020;80:1203–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duke ES, Barone AK, Chatterjee S, Mishra-Kalyani PS, Shen Y-L, Isikwei E, et al. FDA approval summary: cabozantinib for differentiated thyroid cancer. Clin Cancer Res. 2022;28:4173–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koppolu V, Rekha Vasigala VK. Checkpoint immunotherapy by nivolumab for treatment of metastatic melanoma. J Cancer Res Ther. 2018;14:1167–75.

Article  CAS  PubMed  Google Scholar 

Jácome AA, Eng C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: focus on nivolumab. Expert Opin Biol Ther. 2019;19:1247–63.

Article  PubMed  Google Scholar 

Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemotherapy. 2019;46:15–24.

Article  Google Scholar 

Lewis AL, Richard J. Challenges in the delivery of peptide drugs: an industry perspective. Ther Deliv. 2015;6:149–63.

Article  CAS  PubMed  Google Scholar 

Richard J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther Deliv. 2017;8:663–84.

Article  CAS  PubMed  Google Scholar 

Collins DS, Kourtis LC, Thyagarajapuram NR, Sirkar R, Kapur S, Harrison MW, et al. Optimizing the bioavailability of subcutaneously administered biotherapeutics through mechanochemical drivers. Pharm Res. 2017;34:2000–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos. 2014;42:1881–9.

Article  PubMed  Google Scholar 

Kinnunen HM, Sharma V, Contreras-Rojas LR, Yu Y, Alleman C, Sreedhara A, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Controlled Release. 2015;214:94–102.

Article  CAS  Google Scholar 

Mathaes R, Koulov A, Joerg S, Mahler H-C. Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries. J Pharm Sci. 2016;105:2255–9.

Article  CAS  PubMed  Google Scholar 

Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A. Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS PharmSciTech. 2015;16:1101–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for synthesis and processing of two-dimensional titanium Carbide (Ti3C2Tx MXene). Chem Mater. 2017;29:7633–44.

Article  CAS  Google Scholar 

Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9:9507–16.

Article  CAS  PubMed  Google Scholar 

Kim H, Alshareef HN. MXetronics: MXene-enabled electronic and photonic devices. ACS Mater Lett. 2020;2:55–70.

Article  CAS  Google Scholar 

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

Article  CAS  PubMed  Google Scholar 

Xie Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q, et al. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interfaces. 2019;11:22129–40.

Article  CAS  PubMed  Google Scholar 

Feng X-Y, Ding B-Y, Liang W-Y, Zhang F, Ning T-Y, Liu J, et al. MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser. Laser Phys Lett. 2018;15:085805.

Article  Google Scholar 

Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F, et al. MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv Opt Mater. 2019;7:1900060.

Article  Google Scholar 

Wu Q, Chen S, Wang Y, Wu L, Jiang X, Zhang F, et al. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, 0, or OH) deposited microfiber. Adv Mater Technol. 2019;4:1800532.

Article  Google Scholar 

Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5:235–58.

Article  CAS  Google Scholar 

Iravani S, Varma RS. MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater Adv. 2021;2:2906–17.

Article  CAS  Google Scholar 

Jastrzębska A, Karwowska E, Basiak D, Zawada A, Ziemkowska W, Wojciechowski T, et al. Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. Int J Electrochem Sci. 2017;12:2159–72.

Article  Google Scholar 

Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska AM, Olszyna A, et al. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 2020;38:264–79.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif