Effects of excipients on the interactions of self-emulsifying drug delivery systems with human blood plasma and plasma membranes

Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82. https://doi.org/10.1016/J.BIOPHA.2004.02.001.

Article  CAS  PubMed  Google Scholar 

Griesser J, Hetényi G, Kadas H, Demarne F, Jannin V, Bernkop-Schnürch A. Self-emulsifying peptide drug delivery systems: how to make them highly mucus permeating. Int J Pharm. 2018;538:159–66. https://doi.org/10.1016/j.ijpharm.2018.01.018.

Article  CAS  PubMed  Google Scholar 

Mahmood A, Bernkop-Schnürch A. A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev. 2019;142:91–101. https://doi.org/10.1016/J.ADDR.2018.07.001.

Article  CAS  PubMed  Google Scholar 

Perlman ME, Murdande SB, Gumkowski MJ, Shah TS, Rodricks CM, Thornton-Manning J, Freel D, Erhart LC. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int J Pharm. 2008;351:15–22. https://doi.org/10.1016/j.ijpharm.2007.09.015.

Article  CAS  PubMed  Google Scholar 

Salawi A. Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Deliv. 2022;29:1811–23. https://doi.org/10.1080/10717544.2022.2083724.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah RR, Dodd S, Schaefer M, Ugozzoli M, Singh M, Otten GR, Amiji MM, O’Hagan DT, Brito LA. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of Droplet size on performance. J Pharm Sci. 2015;104:1352–61. https://doi.org/10.1002/jps.24337.

Article  CAS  PubMed  Google Scholar 

Bastola R, Seo JE, Keum T, Noh G, Choi JW, Il Shin J, Kim JH, Lee S. Preparation of squalene oil-based emulsion adjuvants employing a self-emulsifying drug delivery system and assessment of mycoplasma hyopneumoniae-specific Antibody titers in BALB/c mice. Pharmaceutics. 2019;11(12):667. https://doi.org/10.3390/pharmaceutics11120667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chae GE, Kim DW, Jin HE. Development of squalene-based oil-in-Water Emulsion adjuvants using a self-emulsifying drug delivery system for enhanced Antigen-specific antibody titers. Int J Nanomed. 2022;17:6221. https://doi.org/10.2147/IJN.S379950.

Article  Google Scholar 

He S, Cui Z, Mei D, Zhang H, Wang X, Dai W, Zhang Q. A cremophor-free self-microemulsified delivery system for intravenous injection of teniposide: evaluation in vitro and in vivo. AAPS PharmSciTech. 2012;13:846–52. https://doi.org/10.1208/s12249-012-9809-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jouan-Hureaux V, Audonnet-Blaise S, Lacatusu D, Krafft MP, Dewachter P, Cauchois G, Stoltz JF, Longrois D, Menu P. Effects of a new perfluorocarbon emulsion on human plasma and whole-blood viscosity in the presence of albumin, hydroxyethyl starch, or modified fluid gelatin: an in vitro rheologic approach. Transfusion. 2006;46:1892–8. https://doi.org/10.1111/J.1537-2995.2006.01000.X.

Article  CAS  PubMed  Google Scholar 

Zhalimov VK, Sklifas AN, Kukushkin NI. Mechanisms of human plasma protein adsorption on the surface of perfluorocarbon emulsion stabilized with proxanol 268. Biophys (Russian Fed. 2012;57:215–21. https://doi.org/10.1134/S0006350912020261/METRICS.

Article  CAS  Google Scholar 

Gessner A, Lieske A, Paulke B, Müller R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54:165–70. https://doi.org/10.1016/S0939-6411(02)00081-4.

Article  CAS  PubMed  Google Scholar 

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428. https://doi.org/10.1016/J.ADDR.2009.03.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomed. 2013;8:3255–69. https://doi.org/10.2147/IJN.S49770.

Article  CAS  Google Scholar 

Debnath M, James Forster I, Ramesh A, Kulkarni A. Protein Corona formation on lipid nanoparticles negatively affects the NLRP3 inflammasome activation. Bioconjug Chem. 2023. https://doi.org/10.1021/ACS.BIOCONJCHEM.3C00329.

Article  PubMed  Google Scholar 

Chonn A, Semple SC, Cullis PR. Association of Blood Proteins with large unilamellar liposomes in vivo. J Biol Chem. 1992;267:18759–65.

Article  CAS  PubMed  Google Scholar 

Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002.

Article  CAS  PubMed  Google Scholar 

Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C. Hemolysis by surfactants — a review. Adv Colloid Interface Sci. 2016;228:1–16. https://doi.org/10.1016/J.CIS.2015.10.011.

Article  CAS  PubMed  Google Scholar 

Hoffmann C, Leroy-Dudal J, Patel S, Gallet O, Pauthe E. Fluorescein isothiocyanate-labeled human plasma fibronectin in extracellular matrix remodeling. Anal Biochem. 2008;372:62–71. https://doi.org/10.1016/J.AB.2007.07.027.

Article  CAS  PubMed  Google Scholar 

Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:7–11. https://doi.org/10.3791/50166.

Article  CAS  Google Scholar 

Lam HT, Le-Vinh B, Phan TNQ, Bernkop‐Schnürch A. Self‐emulsifying drug delivery systems and cationic surfactants: do they potentiate each other in cytotoxicity? J Pharm Pharmacol. 2019;71:156–66. https://doi.org/10.1111/jphp.13021.

Article  CAS  PubMed  Google Scholar 

Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58. https://doi.org/10.1016/S0169-409X(96)00490-5.

Article  CAS  Google Scholar 

Driscoll DF. Commercial Lipid Emulsions and All-in-One Mixtures for Intravenous Infusion-Composition and Physicochemical Properties. In: Calder PC, Waitzberg DL, Koletzko B, editors. Intravenous Lipid Emulsions, vol. 4. World Review of Nutrition and Dietetics. S. Karger AG; 2014. p. 48–56. https://doi.org/10.1159/000365430.

Chapter  Google Scholar 

Deckelbaum RJ, Hamilton JA, Moser A, Bengtsson-Olivecrona G, Butbul E, Carpentier YA, Gutman A, Olivecrona T. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry. 1990;29:1136–42.

Article  CAS  PubMed  Google Scholar 

Shah A, Thool P, Sorathiya K, Prajapati H, Dalrymple D, Serajuddin ATM. Effect of different polysorbates on development of self-microemulsifying drug delivery systems using medium chain lipids. Drug Dev Ind Pharm. 2018;44:215–23. https://doi.org/10.1080/03639045.2017.1386202.

Article  CAS  PubMed  Google Scholar 

Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger MA. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf Physicochem Eng Asp. 2015;469:166–79. https://doi.org/10.1016/J.COLSURFA.2015.01.019.

Article  Google Scholar 

van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O’Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff THM, Kromann I, Andersen P. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107. https://doi.org/10.1016/J.VACCINE.2014.10.036.

Article  PubMed  Google Scholar 

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94. https://doi.org/10.1038/s41578-021-00358-0.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif