Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82. https://doi.org/10.1016/J.BIOPHA.2004.02.001.
Article CAS PubMed Google Scholar
Griesser J, Hetényi G, Kadas H, Demarne F, Jannin V, Bernkop-Schnürch A. Self-emulsifying peptide drug delivery systems: how to make them highly mucus permeating. Int J Pharm. 2018;538:159–66. https://doi.org/10.1016/j.ijpharm.2018.01.018.
Article CAS PubMed Google Scholar
Mahmood A, Bernkop-Schnürch A. A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev. 2019;142:91–101. https://doi.org/10.1016/J.ADDR.2018.07.001.
Article CAS PubMed Google Scholar
Perlman ME, Murdande SB, Gumkowski MJ, Shah TS, Rodricks CM, Thornton-Manning J, Freel D, Erhart LC. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int J Pharm. 2008;351:15–22. https://doi.org/10.1016/j.ijpharm.2007.09.015.
Article CAS PubMed Google Scholar
Salawi A. Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Deliv. 2022;29:1811–23. https://doi.org/10.1080/10717544.2022.2083724.
Article CAS PubMed PubMed Central Google Scholar
Shah RR, Dodd S, Schaefer M, Ugozzoli M, Singh M, Otten GR, Amiji MM, O’Hagan DT, Brito LA. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of Droplet size on performance. J Pharm Sci. 2015;104:1352–61. https://doi.org/10.1002/jps.24337.
Article CAS PubMed Google Scholar
Bastola R, Seo JE, Keum T, Noh G, Choi JW, Il Shin J, Kim JH, Lee S. Preparation of squalene oil-based emulsion adjuvants employing a self-emulsifying drug delivery system and assessment of mycoplasma hyopneumoniae-specific Antibody titers in BALB/c mice. Pharmaceutics. 2019;11(12):667. https://doi.org/10.3390/pharmaceutics11120667.
Article CAS PubMed PubMed Central Google Scholar
Chae GE, Kim DW, Jin HE. Development of squalene-based oil-in-Water Emulsion adjuvants using a self-emulsifying drug delivery system for enhanced Antigen-specific antibody titers. Int J Nanomed. 2022;17:6221. https://doi.org/10.2147/IJN.S379950.
He S, Cui Z, Mei D, Zhang H, Wang X, Dai W, Zhang Q. A cremophor-free self-microemulsified delivery system for intravenous injection of teniposide: evaluation in vitro and in vivo. AAPS PharmSciTech. 2012;13:846–52. https://doi.org/10.1208/s12249-012-9809-0.
Article CAS PubMed PubMed Central Google Scholar
Jouan-Hureaux V, Audonnet-Blaise S, Lacatusu D, Krafft MP, Dewachter P, Cauchois G, Stoltz JF, Longrois D, Menu P. Effects of a new perfluorocarbon emulsion on human plasma and whole-blood viscosity in the presence of albumin, hydroxyethyl starch, or modified fluid gelatin: an in vitro rheologic approach. Transfusion. 2006;46:1892–8. https://doi.org/10.1111/J.1537-2995.2006.01000.X.
Article CAS PubMed Google Scholar
Zhalimov VK, Sklifas AN, Kukushkin NI. Mechanisms of human plasma protein adsorption on the surface of perfluorocarbon emulsion stabilized with proxanol 268. Biophys (Russian Fed. 2012;57:215–21. https://doi.org/10.1134/S0006350912020261/METRICS.
Gessner A, Lieske A, Paulke B, Müller R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54:165–70. https://doi.org/10.1016/S0939-6411(02)00081-4.
Article CAS PubMed Google Scholar
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428. https://doi.org/10.1016/J.ADDR.2009.03.009.
Article CAS PubMed PubMed Central Google Scholar
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomed. 2013;8:3255–69. https://doi.org/10.2147/IJN.S49770.
Debnath M, James Forster I, Ramesh A, Kulkarni A. Protein Corona formation on lipid nanoparticles negatively affects the NLRP3 inflammasome activation. Bioconjug Chem. 2023. https://doi.org/10.1021/ACS.BIOCONJCHEM.3C00329.
Chonn A, Semple SC, Cullis PR. Association of Blood Proteins with large unilamellar liposomes in vivo. J Biol Chem. 1992;267:18759–65.
Article CAS PubMed Google Scholar
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002.
Article CAS PubMed Google Scholar
Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C. Hemolysis by surfactants — a review. Adv Colloid Interface Sci. 2016;228:1–16. https://doi.org/10.1016/J.CIS.2015.10.011.
Article CAS PubMed Google Scholar
Hoffmann C, Leroy-Dudal J, Patel S, Gallet O, Pauthe E. Fluorescein isothiocyanate-labeled human plasma fibronectin in extracellular matrix remodeling. Anal Biochem. 2008;372:62–71. https://doi.org/10.1016/J.AB.2007.07.027.
Article CAS PubMed Google Scholar
Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:7–11. https://doi.org/10.3791/50166.
Lam HT, Le-Vinh B, Phan TNQ, Bernkop‐Schnürch A. Self‐emulsifying drug delivery systems and cationic surfactants: do they potentiate each other in cytotoxicity? J Pharm Pharmacol. 2019;71:156–66. https://doi.org/10.1111/jphp.13021.
Article CAS PubMed Google Scholar
Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58. https://doi.org/10.1016/S0169-409X(96)00490-5.
Driscoll DF. Commercial Lipid Emulsions and All-in-One Mixtures for Intravenous Infusion-Composition and Physicochemical Properties. In: Calder PC, Waitzberg DL, Koletzko B, editors. Intravenous Lipid Emulsions, vol. 4. World Review of Nutrition and Dietetics. S. Karger AG; 2014. p. 48–56. https://doi.org/10.1159/000365430.
Deckelbaum RJ, Hamilton JA, Moser A, Bengtsson-Olivecrona G, Butbul E, Carpentier YA, Gutman A, Olivecrona T. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry. 1990;29:1136–42.
Article CAS PubMed Google Scholar
Shah A, Thool P, Sorathiya K, Prajapati H, Dalrymple D, Serajuddin ATM. Effect of different polysorbates on development of self-microemulsifying drug delivery systems using medium chain lipids. Drug Dev Ind Pharm. 2018;44:215–23. https://doi.org/10.1080/03639045.2017.1386202.
Article CAS PubMed Google Scholar
Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger MA. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf Physicochem Eng Asp. 2015;469:166–79. https://doi.org/10.1016/J.COLSURFA.2015.01.019.
van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O’Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff THM, Kromann I, Andersen P. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107. https://doi.org/10.1016/J.VACCINE.2014.10.036.
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94. https://doi.org/10.1038/s41578-021-00358-0.
留言 (0)