Design of charge converting lipid nanoparticles via a microfluidic coating technique

Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen SP, Aguiar-Ricardo A, Corvo ML, Santos HA. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8:3270–7.

Article  CAS  PubMed  Google Scholar 

Costa C, Liu Z, Simoes SI, Correia A, Rahikkala A, Seitsonen J, Ruokolainen J, Aguiar-Ricardo A, Santos HA, Corvo ML. One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids Surf B Biointerfaces. 2021;199:111556.

Article  CAS  PubMed  Google Scholar 

Hussain MT, Tiboni M, Perrie Y, Casettari L. Microfluidic production of protein loaded chimeric stealth liposomes. Int J Pharm. 2020;590:119955.

Article  CAS  PubMed  Google Scholar 

Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, Jasti BR. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm. 2023;631:122464.

Article  CAS  PubMed  Google Scholar 

Arduino I, Liu Z, Iacobazzi RM, Lopedota AA, Lopalco A, Cutrignelli A, Laquintana V, Porcelli L, Azzariti A, Franco M, Santos HA, Denora N. Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. Int J Pharm. 2021;610:121246.

Article  CAS  PubMed  Google Scholar 

Arduino I, Liu Z, Rahikkala A, Figueiredo P, Correia A, Cutrignelli A, Denora N, Santos HA. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater. 2021;121:566–78.

Article  CAS  PubMed  Google Scholar 

Weaver E, Sommonte F, Hooker A, Denora N, Uddin S, Lamprou DA. Microfluidic encapsulation of enzymes and steroids within solid lipid nanoparticles. Drug Deliv Transl Res. 2023;14:266–79.

Article  PubMed  PubMed Central  Google Scholar 

Anderluzzi G, Perrie Y. Microfluidic manufacture of solid lipid nanoparticles: a case study on tristearin-based systems. Drug Deliv Lett. 2020;10:1–12.

Google Scholar 

Sommonte F, Arduino I, Iacobazzi RM, Tiboni M, Catalano F, Marotta R, Di Francesco M, Casettari L, Decuzzi P, Lopedota AA, Denora N. Microfluidic assembly of “Turtle-Like” shaped solid lipid nanoparticles for lysozyme delivery. Int J Pharm. 2023;631:122479.

Article  CAS  PubMed  Google Scholar 

Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release. 2022;344:80–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martins JP, Torrieri G, Santos HA. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv. 2018;15:469–79.

Article  CAS  PubMed  Google Scholar 

Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip. 2017;17:1856–83.

Article  CAS  PubMed  Google Scholar 

Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for production of particles: mechanism, methodology, and applications. Small. 2020;16:e1904673.

Article  PubMed  Google Scholar 

Correia MG, Briuglia ML, Niosi F, Lamprou DA. Microfluidic manufacturing of phospholipid nanoparticles: stability, encapsulation efficacy, and drug release. Int J Pharm. 2017;516:91–9.

Article  Google Scholar 

Zhigaltsev IV, Belliveau N, Hafez I, Leung AK, Huft J, Hansen C, Cullis PR. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28:3633–40.

Article  CAS  PubMed  Google Scholar 

Joshi S, Hussain MT, Roces CB, Anderluzzi G, Kastner E, Salmaso S, Kirby DJ, Perrie Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int J Pharm. 2016;514:160–8.

Article  CAS  PubMed  Google Scholar 

Veider F, Akkus-Dagdeviren ZB, Knoll P, Bernkop-Schnurch A. Design of nanostructured lipid carriers and solid lipid nanoparticles for enhanced cellular uptake. Int J Pharm. 2022;624:122014.

Article  CAS  PubMed  Google Scholar 

Knoll P, Hörmann N, Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Charge converting nanostructured lipid carriers containing a cell-penetrating peptide for enhanced cellular uptake. J Colloid Interface Sci. 2022;628:463–75.

Article  CAS  PubMed  Google Scholar 

Akkus-Dagdeviren ZB, Wolf JD, Kurpiers M, Shahzadi I, Steinbring C, Bernkop-Schnurch A. Charge reversal self-emulsifying drug delivery systems: a comparative study among various phosphorylated surfactants. J Colloid Interface Sci. 2021;589:532–44.

Article  CAS  PubMed  Google Scholar 

Zaichik S, Steinbring C, Jelkmann M, Bernkop-Schnurch A. Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. Int J Pharm. 2020;581:119299.

Article  CAS  PubMed  Google Scholar 

Akkuş-Dağdeviren ZB, Fürst A, Friedl JD, Tribus M. Nanoarchitectonics of Layer-by-Layer (LbL) coated nanostructured lipid carriers (NLCs) for Enzyme-Triggered charge reversal. J Colloid Interface Sci. 2023;629:541–53.

Article  PubMed  Google Scholar 

Friedl JD, Steinbring C, Zaichik S, Le N-MN, Bernkop-Schnürch A. Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine. 2020;15:1829–41.

Article  CAS  PubMed  Google Scholar 

Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold spring Harbor Laboratory Press; 2018.

Book  Google Scholar 

Van Tonder A, Joubert AM, Cromarty AD. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three coomonly used cell enumeration assays. BMC Res Note. 2015;8:1–10.

Google Scholar 

Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:1–5.

Google Scholar 

Friedl H, Dunnhaupt S, Hintzen F, Waldner C, Parikh S, Pearson JP, Wilcox MD, Bernkop-Schnurch A. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J Pharm Sci. 2013;102:4406–13.

Article  CAS  PubMed  Google Scholar 

Wibel R, Braun DE, Hammerle L, Jorgensen AM, Knoll P, Salvenmoser W, Steinbring C, Bernkop-Schnurch A. In vitro investigation of thiolated chitosan derivatives as mucoadhesive coating materials for solid lipid nanoparticles. Biomacromol. 2021;22:3980–91.

Article  CAS  Google Scholar 

Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, Wild AW, Lee JB, Taylor RJ, Tam YK, Hansen CL, Cullis PR. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012;1:e37.

Article  PubMed  PubMed Central  Google Scholar 

Lopes C, Cristovao J, Silverio V, Lino PR, Fonte P. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications. Expert Opin Drug Deliv. 2022;19:1381–95.

Article  CAS  PubMed  Google Scholar 

Leung AK, Tam YY, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B. 2015;119:8698–706.

Article  CAS  PubMed  Google Scholar 

Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, Perrie Y. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics. 2020;12:1095.

Article  CAS 

留言 (0)

沒有登入
gif