Impact of calcitriol and PGD2-G-loaded lipid nanocapsules on oligodendrocyte progenitor cell differentiation and remyelination

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58. https://doi.org/10.1038/nri3871.

Article  CAS  PubMed  Google Scholar 

Thompson AJ, et al. Multiple sclerosis. The Lancet. 2018;391(10130):1622–36. https://doi.org/10.1016/s0140-6736(18)30481-1.

Article  Google Scholar 

Walton C, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816–21. https://doi.org/10.1177/1352458520970841.

Article  PubMed  PubMed Central  Google Scholar 

Fatima M, et al. Therapeutic role of vitamin D in multiple sclerosis: an essentially contested concept. Cureus. 2022;14(6):e26186. https://doi.org/10.7759/cureus.26186.

Article  PubMed  PubMed Central  Google Scholar 

Burton JM, et al. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology. 2010;74(23):1852–9. https://doi.org/10.1212/WNL.0b013e3181e1cec2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galoppin M, et al. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun. 2022;4(4):fcac171. https://doi.org/10.1093/braincomms/fcac171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baas D, et al. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia. 2000;31(1):59–68. https://doi.org/10.1002/(sici)1098-1136(200007)31:1%3c59::aid-glia60%3e3.0.co;2-y.

Article  CAS  PubMed  Google Scholar 

de la Fuente AG, et al. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J Cell Biol. 2015;211(5):975–85. https://doi.org/10.1083/jcb.201505119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirazi HA, et al. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol. 2015;98(2):240–5. https://doi.org/10.1016/j.yexmp.2015.02.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mengozzi M, et al. Vitamins D3 and D2 have marked but different global effects on gene expression in a rat oligodendrocyte precursor cell line. Mol Med. 2020;26(1):32. https://doi.org/10.1186/s10020-020-00153-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao D, Goltzman D. probing the scope and mechanisms of calcitriol actions using genetically modified mouse models. JBMR Plus. 2021;5(1):e10434. https://doi.org/10.1002/jbm4.10434.

Article  CAS  PubMed  Google Scholar 

Janousek J, et al. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci. 2022;1–38. https://doi.org/10.1080/10408363.2022.2070595.

Smolders J, et al. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue. J Neuropathol Exp Neurol. 2013;72(2):91–105. https://doi.org/10.1097/NEN.0b013e31827f4fcc.

Article  CAS  PubMed  Google Scholar 

Nystad AE, et al. Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone model. APMIS. 2014;122(12):1178–86. https://doi.org/10.1111/apm.12281.

Article  CAS  PubMed  Google Scholar 

Chiuso-Minicucci F, et al. Treatment with vitamin D/mog association suppresses experimental autoimmune encephalomyelitis. PLoS ONE. 2015;10(5):e0125836. https://doi.org/10.1371/journal.pone.0125836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haghmorad D, et al. Prevention and treatment of experimental autoimmune encephalomyelitis induced mice with 1, 25-dihydroxyvitamin D3. Neurol Res. 2019;41(10):943–57. https://doi.org/10.1080/01616412.2019.1650218.

Article  CAS  PubMed  Google Scholar 

Parastouei K, et al. The effect of calcitriol and all-trans retinoic acid on T-bet, IFN-gamma, GATA3 and IL-4 genes expression in experimental autoimmune encephalomyelitis. APMIS. 2020;128(11):583–92. https://doi.org/10.1111/apm.13073.

Article  CAS  PubMed  Google Scholar 

de Oliveira LRC, et al. Calcitriol prevents neuroinflammation and reduces blood-brain barrier disruption and local macrophage/microglia activation. Front Pharmacol. 2020;11:161. https://doi.org/10.3389/fphar.2020.00161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crocker JF, et al. The comparative toxicity of vitamin D metabolites in the weanling mouse. Toxicol Appl Pharmacol. 1985;80(1):119–26. https://doi.org/10.1016/0041-008x(85)90106-1.

Article  CAS  PubMed  Google Scholar 

Wingerchuk DM, et al. A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005;76(9):1294–6. https://doi.org/10.1136/jnnp.2004.056499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azari AA, et al. Hydration with saline decreases toxicity of mice injected with calcitriol in preclinical studies. J Environ Pathol Toxicol Oncol. 2013;32(3):241–4. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2013007532.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lung BE, Mowery ML, Komatsu DEE. Calcitriol. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. PMID: 30252281.

Google Scholar 

Heurtault B, Saulnier P, Pech B, Proust JE, Richard J, Benoit JP. Lipidic nanocapsules: preparation process and use as drug delivery systems. Patent No. WO02688000. 2000.

Mwema A, et al. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD(2)-G. Nanomedicine. 2022;1:102633. https://doi.org/10.1016/j.nano.2022.102633.

Article  CAS  Google Scholar 

Huynh NT, et al. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–9. https://doi.org/10.1016/j.ijpharm.2009.04.026.

Article  CAS  PubMed  Google Scholar 

Carradori D, et al. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release. 2016;238:253–62. https://doi.org/10.1016/j.jconrel.2016.08.006.

Article  CAS  PubMed  Google Scholar 

Carradori D, et al. Retinoic acid-loaded NFL-lipid nanocapsules promote oligodendrogenesis in focal white matter lesion. Biomaterials. 2020;230:119653. https://doi.org/10.1016/j.biomaterials.2019.119653.

Article  CAS  PubMed  Google Scholar 

Labrak Y, et al. Impact of anti-PDGFRalpha antibody surface functionalization on LNC uptake by oligodendrocyte progenitor cells. Int J Pharm. 2022;618:121623. https://doi.org/10.1016/j.ijpharm.2022.121623.

Article  CAS  PubMed  Google Scholar 

Alhouayek M, et al. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proc Natl Acad Sci U S A. 2013;110(43):17558–63. https://doi.org/10.1073/pnas.1314017110.

Article  PubMed  PubMed Central  Google Scholar 

Alhouayek M, et al. The endogenous bioactive lipid prostaglandin D2-glycerol ester reduces murine colitis via DP1 and PPARgamma receptors. FASEB J. 2018;32(9):5000–11. https://doi.org/10.1096/fj.201701205R.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif