Cell-mediated nanoparticle delivery systems: towards precision nanomedicine

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330.

Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem. 2019;62:10475–96. https://doi.org/10.1021/acs.jmedchem.9b00511.

Ahmad A, Georgiou PG, Pancaro A, Hasan M, Nelissen I, Gibson MI. Polymer-tethered glycosylated gold nanoparticles recruit sialylated glycoproteins into their protein corona, leading to off-target lectin binding. Nanoscale. 2022;14:13261–73. https://doi.org/10.1039/D2NR01818G.

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol Pharm. 2008;5:505–15. https://doi.org/10.1021/mp800051m.

Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release. 2013;172:782–94. https://www.sciencedirect.com/science/article/pii/S0168365913008018.

Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther. 2022;39:102915. https://www.sciencedirect.com/science/article/pii/S1572100022002010.

New Insights into. Permeability as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics. ACS Nano. 2017;11:9567–9. https://doi.org/10.1021/acsnano.7b07214.

Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C. 2019;98:1252–76. https://www.sciencedirect.com/science/article/pii/S0928493118326304.

Nguyen LNM, Lin ZP, Sindhwani S, MacMillan P, Mladjenovic SM, Stordy B et al. The exit of nanoparticles from solid tumours. Nat Mater. 2023;22:1261–72. https://doi.org/10.1038/s41563-023-01630-0.

Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. https://doi.org/10.1038/natrevmats.2016.14.

Su Y, Xie Z, Kim GB, Dong C, Yang J. Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomater Sci Eng. 2015;1:201–17. https://doi.org/10.1021/ab500179h.

Yu H, Yang Z, Li F, Xu L, Sun Y. Cell-mediated targeting drugs delivery systems. Drug Deliv. 2020;27:1425–37. https://doi.org/10.1080/10717544.2020.1831103.

Wu H-H, Zhou Y, Tabata Y, Gao J-Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. Journal of Controlled Release. 2019;294:102–13. https://www.sciencedirect.com/science/article/pii/S0168365918307223.

Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R et al. Advances of blood cell-based drug delivery systems. European Journal of Pharmaceutical Sciences. 2017;96:115–28. https://www.sciencedirect.com/science/article/pii/S0928098716302895.

ROSSI L, BRANDI G, SCHIAVANO GF, MILLO BALESTRAE, SCARFI E et al. S,. Macrophage Protection Against Human Immunodeficiency Virus or Herpes Simplex Virus by Red Blood Cell-Mediated Delivery of a Heterodinucleotide of Azidothymidine and Acyclovir. AIDS Res Hum Retroviruses. 1998;14:435–44. https://doi.org/10.1089/aid.1998.14.435.

Nicolau C. Modulation of oxygen release by red blood cells: physiological and therapeutic perspectives. Rev Roum Chim. 2015;60:275–82.

Google Scholar 

Favretto ME, Cluitmans JCA, Bosman GJCGM, Brock R. Human erythrocytes as drug carriers: Loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. Journal of Controlled Release. 2013;170:343–51. https://www.sciencedirect.com/science/article/pii/S0168365913003246.

Crinelli R, Antonelli A, Bianchi M, Gentilini L, Scaramucci S, Magnani M. Selective Inhibition of NF-kB Activation and TNF-α Production in Macrophages by Red Blood Cell-Mediated Delivery of Dexamethasone. Blood Cells Mol Dis. 2000;26:211–22. https://www.sciencedirect.com/science/article/pii/S1079979600902985.

Chao C-J, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev. 2023;197:114840. https://www.sciencedirect.com/science/article/pii/S0169409X23001552.

He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM et al. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. Journal of Controlled Release. 2014;176:123–32. https://www.sciencedirect.com/science/article/pii/S0168365913009619.

Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target. 2023;31:1–13. https://doi.org/10.1080/1061186X.2022.2104299.

Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomedicine & Pharmacotherapy. 2022;156:113841. https://www.sciencedirect.com/science/article/pii/S0753332222012306.

Cheng Q, Xu M, Sun C, Yang K, Yang Z, Li J et al. Enhanced antibacterial function of a supramolecular artificial receptor-modified macrophage (SAR-Macrophage). Mater Horiz. 2022;9:934–41. https://doi.org/10.1039/D1MH01813B.

Ayer M, Klok H-A. Cell-mediated delivery of synthetic nano- and microparticles. Journal of Controlled Release. 2017;259:92–104. https://www.sciencedirect.com/science/article/pii/S016836591730055X.

Ferguson LT, Hood ED, Shuvaeva T, Shuvaev VV, Basil MC, Wang Z et al. Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS Nano. 2022;16:4666–83. https://doi.org/10.1021/acsnano.1c11374.

Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie Y-Q et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36:707–16. https://doi.org/10.1038/nbt.4181.

Fang Y. Ligand–receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov. 2012;7:969–88. https://doi.org/10.1517/17460441.2012.715631.

An J-X, Han Z-Y, Qin Y-T, Li C-X, He J-L, Zhang X-Z. Bacteria-Based Backpacks to Enhance Adoptive Macrophage Transfer against Solid Tumors. Advanced Materials. 2023;n/a:2305384. https://doi.org/10.1002/adma.202305384.

Prakash S, Kumbhojkar N, Lu A, Kapate N, Suja VC, Park KS et al. Polymer Micropatches as Natural Killer Cell Engagers for Tumor Therapy. ACS Nano. 2023;17:15918–30. https://doi.org/10.1021/acsnano.3c03980.

Klyachko NL, Polak R, Haney MJ, Zhao Y, Gomes Neto RJ, Hill MC et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials. 2017;140:79–87. https://www.sciencedirect.com/science/article/pii/S0142961217304106.

Vasconcellos FC, Swiston AJ, Beppu MM, Cohen RE, Rubner MF. Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion. Biomacromolecules. 2010;11:2407–14. https://doi.org/10.1021/bm100570r.

Rubner MF, Mitragotri S. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater. 2011;23:H105–9. https://doi.org/10.1002/adma.201004074

Swiston AJ, Gilbert JB, Irvine DJ, Cohen RE, Rubner MF. Freely Suspended Cellular Backpacks Lead to Cell Aggregate Self-Assembly. Biomacromolecules. 2010;11:1826–32. https://doi.org/10.1021/bm100305h.

Li L, Guan Y, Liu H, Hao N, Liu T, Meng X et al. Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy. ACS Nano. 2011;5:7462–70. https://doi.org/10.1021/nn202399w.

Wayne EC, Chandrasekaran S, Mitchell MJ, Chan MF, Lee RE, Schaffer CB et al. TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer. Journal of Controlled Release. 2016;223:215–23. https://www.sciencedirect.com/science/article/pii/S0168365915302972.

Chandrasekaran S, McGuire MJ, King MR. Sweeping lymph node micrometastases off their feet: an engineered model to evaluate natural killer cell mediated therapeutic intervention of circulating tumor cells that disseminate to the lymph nodes. Lab Chip. 2014;14:118–27. https://doi.org/10.1039/C3LC50584G

Article  CAS  PubMed  Google Scholar 

Chandrasekaran S, Chan MF, Li J, King MR. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials. 2016;77:66–76. https://www.sciencedirect.com/science/article/pii/S0142961215008911.

Mitchell MJ, Wayne E, Rana K, Schaffer CB, King MR. TRAIL-coated leukocytes that kill cancer cells in the circulation. Proceedings of the National Academy of Sciences. 2014;111:930–5. https://doi.org/10.1073/pnas.1316312111.

Polak R, Crouzier T, Lim RM, Ribbeck K, Beppu MM, Pitombo RNM et al. Sugar-Mediated Disassembly of Mucin/Lectin Multilayers and Their Use as pH-Tolerant, On-Demand Sacrificial Layers. Biomacromolecules. 2014;15:3093–8. https://doi.org/10.1021/bm5006905.

Polak R, Lim RM, Beppu MM, Pitombo RNM, Cohen RE, Rubner MF. Liposome-Loaded Cell Backpacks. Adv Healthc Mater. 2015;4:2832–41. https://doi.org/10.1002/adhm.201500604.

Anselmo AC, Gilbert JB, Kumar S, Gupta V, Cohen RE, Rubner MF et al. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. Journal of Controlled Release. 2015;199:29–36. https://www.sciencedirect.com/science/article/pii/S0168365914007755.

Krishnamachari Y, Pearce ME, Salem AK. Self-Assembly of Cell–Microparticle Hybrids. Advanced Materials. 2008;20:989–93. https://doi.org/10.1002/adma.200701689.

Mooney R, Weng Y, Garcia E, Bhojane S, Smith-Powell L, Kim SU et al. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. Journal of Controlled Release. 2014;191:82–9. https://www.sciencedirect.com/science/article/pii/S0168365914004143.

Mooney R, Weng Y, Tirughana-Sambandan R, Valenzuela V, Aramburo S, Garcia E et al. Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncology. 2014;10:401–15. https://doi.org/10.2217/fon.13.217.

Cheng H, Kastrup CJ, Ramanathan R, Siegwart DJ, Ma M, Bogatyrev SR et al. Nanoparticulate Cellular Patches for Cell-Mediated Tumoritropic Delivery. ACS Nano. 2010;4:625–31. https://doi.org/10.1021/nn901319y.

López CL, Brempelis KJ, Matthaei JF, Montgomery KS, Srinivasan S, Roy D et al. Arming Immune Cell Therapeutics with Polymeric Prodrugs. Adv Healthc Mater. 2022;11:2101944. https://doi.org/10.1002/adhm.202101944.

Zhao Z, Ukidve A, Krishnan V, Fehnel A, Pan DC, Gao Y et al. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat Biomed Eng. 2021;5:441–54. https://doi.org/10.1038/s41551-020-00644-2.

Liao X, Gong G, Dai M, Xiang Z, Pan J, He X et al. Systemic Tumor Suppression via Macrophage-Driven Automated Homing of Metal-Phenolic-Gated Nanosponges for Metastatic Melanoma. Advanced Science. 2023;10:2207488. https://doi.org/10.1002/advs.202207488.

Gilbert JB, O’Brien JS, Suresh HS, Cohen RE, Rubner MF. Orientation-Specific Attachment of Polymeric Microtubes on Cell Surfaces. Advanced Materials. 2013;25:5948–52. https://doi.org/10.1002/adma.201302673.

Gao C, Cheng Q, Li J, Chen J, Wang Q, Wei J et al. Supramolecular Macrophage-Liposome Marriage for Cell-Hitchhiking Delivery and Immunotherapy of Acute Pneumonia and Melanoma. Adv Funct Mater. 2021;31:2102440. https://doi.org/10.1002/adfm.202102440.

Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M et al. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0152074

Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med. 2010;16:1035–41. https://doi.org/10.1038/nm.2198.

Liu Y, Adu-Berchie K, Brockman JM, Pezone M, Zhang DKY, Zhou J et al. Cytokine conjugation to enhance T cell therapy. Proceedings of the National Academy of Sciences. 2023;120: e2213222120. https://doi.org/10.1073/pnas.2213222120.

Maciel MM, Correia TR, Gaspar VM, Rodrigues JMM, Choi IS, Mano JF. Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials. Adv Funct Mater. 2021;31:2009619. https://doi.org/10.1002/adfm.202009619.

Shen N, Qi X, Bagrov DV, Krechetov SP, Sharapov MG, Durymanov MO. Surface modification of fibroblasts with peroxiredoxin-1-loaded polymeric microparticles increases cell mobility, resistance to oxidative stress and collagen I production. Colloids Surf B Biointerfaces. 2022;219:112834. https://www.sciencedirect.com/science/article/pii/S0927776522005173.

Holden CA, Yuan Q, Yeudall WA, Lebman DA, Yang H. Surface engineering of macrophages with nanoparticles to generate a cell–nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int J Nanomed. 2010;25–36. https://doi.org/10.2147/IJN.S8339

Xu L, Zolotarskaya OYu, Yeudall WA, Yang H. Click Hybridization of Immune Cells and Polyamidoamine Dendrimers. Adv Healthc Mater. 2014;3:1430–8. https://doi.org/10.1002/adhm.201300515.

Zhang Y, Liu S, Li D, He C, Wang D, Wei M et al. Adoptive transfer of Fe3O4-SWCNT engineered M1-like macrophages for magnetic resonance imaging and enhanced cancer immunotherapy. Colloids Surf B Biointerfaces. 2023;229:113452. https://www.sciencedirect.com/science/article/pii/S0927776523003302.

Xie Z, Su Y, Kim GB, Selvi E, Ma C, Aragon-Sanabria V et al. Immune Cell-Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery. Small. 2017;13:1603121. https://doi.org/10.1002/smll.201603121.

Evans MA, Huang P-J, Iwamoto Y, Ibsen KN, Chan EM, Hitomi Y et al. Macrophage-mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control. Chem Sci. 2018;9:3729–41. https://doi.org/10.1039/C8SC00015H.

Zhang Y, Liu T, Wang J, Zou B, Li L, Yao L et al. Cellinker: a platform of ligand–receptor interactions for intercellular communication analysis. Bioinformatics. 2021;37:2025–32. https://doi.org/10.1093/bioinformatics/btab036.

Hongbao M, Young M, Yan Y. Cluster of differentiation (CD). NY Sci J. 2015;8:49–53.

Google Scholar 

Lenders V, Escudero R, Koutsoumpou X, Armengol Álvarez L, Rozenski J, Soenen SJ et al. Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. J Nanobiotechnology. 2022;20:333. https://doi.org/10.1186/s12951-022-01544-0.

Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S et al. Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano. 2009;3:3273–86. https://doi.org/10.1021/nn900918w.

Xu M, Zha H, Chen J, Lee SM-Y, Wang Q, Wang R et al. Ice and Fire Supramolecular Cell-Conjugation Drug Delivery Platform for Deep Tumor Ablation and Boosted Antitumor Immunity. Advanced Materials. 2023;35:2305287. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/adma.202305287.

Xu X, Kwong CHT, Li J, Wei J, Wang R. Zombie Macrophages for Targeted Drug Delivery to Treat Acute Pneumonia. ACS Appl Mater Interfaces. 2023;15:29012–22. https://doi.org/10.1021/acsami.3c06025.

Quan X, Liang X, Ding Y, Han Y, Li J, Yuan M et al. Cryo-Shocked Platelet Coupled with ROS-Responsive Nanomedicine for Targeted Treatment of Thromboembolic Disease. ACS Nano. 2023;17:6519–33. https://doi.org/10.1021/acsnano.2c11865.

Li J, Ding Y, Cheng Q, Gao C, Wei J, Wang Z et al. Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. Journal of Controlled Release. 2022;350:777–86. https://www.sciencedirect.com/science/article/pii/S016836592200534X.

Gao C, Liu C, Chen Q, Wang Y, Kwong CHT, Wang Q et al. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis. Journal of Controlled Release. 2022;349:2–15. https://www.sciencedirect.com/science/article/pii/S0168365922003959.

Lamoot A, Uvyn A, Kasmi S, De Geest BG. Covalent Cell Surface Conjugation of Nanoparticles by a Combination of Metabolic Labeling and Click Chemistry. Angewandte Chemie International Edition. 2021;60:6320–5. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202015625.

Sunasee R, Narain R. Covalent and Noncovalent Bioconjugation Strategies. Chemistry of Bioconjugates. John Wiley & Sons, Ltd; 2014. pp. 1–75. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/9781118775882.ch1.

Thomsen T, Reissmann R, Kaba E, Engelhardt B, Klok H-A. Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes. Biomacromolecules. 2021;22:3416–30. https://doi.org/10.1021/acs.biomac.1c00488.

Park J, Andrade B, Seo Y, Kim M-J, Zimmerman SC, Kong H. Engineering the Surface of Therapeutic Living Cells. Chem Rev. 2018;118:1664–90. https://doi.org/10.1021/acs.chemrev.7b00157.

Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng. 2018;4:3658–77. https://doi.org/10.1021/acsbiomaterials.7b00514.

Chen Y, Gao P, Pan W, Shi M, Liu S, Li N et al. Polyvalent spherical aptamer engineered macrophages: X-ray-actuated phenotypic transformation for tumor immunotherapy. Chem Sci. 2021;12:13817–24. https://doi.org/10.1039/D1SC03997K.

Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96. https://www.sciencedirect.com/science/article/pii/S0169409X1930050X

Article  CAS  PubMed  Google Scholar 

Ma N, Ma C, Li C, Wang T, Tang Y, Wang H, et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol. 2013;13:6485–98. https://doi.org/10.1166/jnn.2013.7525

Article  CAS  PubMed  Google Scholar 

Reichel D, Tripathi M, Perez JM. Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nanotheranostics. 2019;3:66. https://doi.org/10.7150/ntno.30052

Article  PubMed  PubMed Central  Google Scholar 

Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, et al. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol. 2019;10:1998. https://doi.org/10.3389/fimmu.2019.01998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan X, Li Y. Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small. 2013;9:1521–32. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/smll.201201390.

Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME et al. Elasticity of Nanoparticles Influences Their Blood Circulation, Phagocytosis, Endocytosis, and Targeting. ACS Nano. 2015;9:3169–77. https://doi.org/10.1021/acsnano.5b00147.

Zhang Y-R, Lin R, Li H-J, He W, Du J-Z, Wang J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. WIREs Nanomedicine and Nanobiotechnology. 2019;11: e1519. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wnan.1519.

Naumenko V, Nikitin A, Garanina A, Melnikov P, Vodopyanov S, Kapitanova K et al. Neutrophil-mediated transport is crucial for delivery of short-circulating magnetic nanoparticles to tumors. Acta Biomater. 2020;104:176–87. https://www.sciencedirect.com/science/article/pii/S174270612030012X.

Yu X, Xing G, Sheng S, Jin L, Zhang Y, Zhu D et al. Neutrophil Camouflaged Stealth Nanovehicle for Photothermal-Induced Tumor Immunotherapy by Triggering Pyroptosis. Advanced Science. 2023;10:2207456. https://doi.org/10.1002/advs.202207456.

Chu D, Dong X, Zhao Q, Gu J, Wang Z. Photosensitization Priming of Tumor Microenvironments Improves Delivery of Nanotherapeutics via Neutrophil Infiltration. Advanced Materials. 2017;29:1701021. https://doi.org/10.1002/adma.201701021.

留言 (0)

沒有登入
gif