AI-driven antibody design with generative diffusion models: current insights and future directions

Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14:49.

Article  PubMed Central  PubMed  Google Scholar 

Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61.

Article  CAS  PubMed  Google Scholar 

Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hummer AM, Abanades B, Deane CM. Advances in computational structure-based antibody design. Curr Opin Struct Biol. 2022;74:102379.

Article  CAS  PubMed  Google Scholar 

Bradbury AR, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29:245–54.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Edward Zhou X, Melcher K, Eric Xu H. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 2019;28:487–501.

Article  CAS  PubMed  Google Scholar 

Zhao LH, Lin J, Ji SY, Zhou XE, Mao C, Shen DD, et al. Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor. Nat Commun. 2022;13:6670.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications. Curr Opin Biotechnol. 2019;60:153–8.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Schroeder HW Jr., Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41–52.

Article  PubMed Central  PubMed  Google Scholar 

Chungyoun M, Gray JJ. AI models for protein design are driving antibody engineering. Curr Opin Biomed Eng. 2023;28:100473.

Article  CAS  PubMed  Google Scholar 

Inbar D, Hochman J, Givol D. Localization of antibody-combining sites within the variable portions of heavy and light chains. Proc Natl Acad Sci USA. 1972;69:2659–62.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev. 2018;47:9137–57.

Article  CAS  PubMed  Google Scholar 

Cannon DA, Shan L, Du Q, Shirinian L, Rickert KW, Rosenthal KL, et al. Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design. PLoS Comput Biol. 2019;15:e1006980.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Parkinson J, Hard R, Wang W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat Commun. 2023;14:454.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng. 2021;5:600–12.

Article  CAS  PubMed  Google Scholar 

Norman RA, Ambrosetti F, Bonvin A, Colwell LJ, Kelm S, Kumar S, et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform. 2020;21:1549–67.

Article  PubMed  Google Scholar 

Shitong L, Yufeng S, Xingang P, Sheng W, Jian P, Jianzhu M. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. In: Neural Information Processing; 2022; New Orleans, LA, USA.

Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, et al. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12:2403.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hawkins-Hooker A, Depardieu F, Baur S, Couairon G, Chen A, Bikard D. Generating functional protein variants with variational autoencoders. PLoS Comput Biol. 2021;17:e1008736.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kucera T, Togninalli M, Meng-Papaxanthos L. Conditional generative modeling for de novo protein design with hierarchical functions. Bioinformatics. 2022;38:3454–61.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, et al. Large language models generate functional protein sequences across diverse families. Nat Biotechnol. 2023;41:1099–106.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ruffolo JA, Madani A. Designing proteins with language models. Nat Biotechnol. 2024;42:200–2.

Article  CAS  PubMed  Google Scholar 

Hayes T, Rao R, Akin H, Sofroniew NJ, Oktay D, Lin Z, et al. Simulating 500 million years of evolution with a language model. Preprint at https://doi.org/10.1101/2024.07.01.600583.

Strokach A, Kim PM. Deep generative modeling for protein design. Curr Opin Struct Biol. 2022;72:226–36.

Article  CAS  PubMed  Google Scholar 

Guo Z, Liu J, Wang Y, Chen M, Wang D, Xu D, et al. Diffusion models in bioinformatics and computational biology. Nat Rev Bioeng. 2024;2:136–54.

Article  PubMed  Google Scholar 

Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. De novo design of protein structure and function with RFdiffusion. Nature. 2023;620:1089–100.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Isert C, Atz K, Schneider G. Structure-based drug design with geometric deep learning. Curr Opin Struct Biol. 2023;79:102548.

Article  CAS  PubMed  Google Scholar 

Guan J, Qian WW, Peng X, Su Y, Peng J, Ma J. 3D equivariant diffusion for target-aware molecule generation and affinity prediction. In: International Conference on Learning Representations. Kigali, Rwanda: Machine Learning for Sciences; 2023; Kigali, Rwanda.

Morehead A, Cheng J. Geometry-complete diffusion for 3d molecule generation. In: International Conference on Learning Representations. Mach Learn Drug Discovery Work; 2023.

Jing B, Corso G, Chang J, Barzilay R, Jaakkola T. Torsional diffusion for molecular conformer generation. Adv Neural Inf Process Syst. 2022;35:24240–53.

Google Scholar 

Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. Diffdock: diffusion steps, twists, and turns for molecular docking. In: International Conference on Learning Representations. Kigali, Rwanda: Machine Learning for Sciences; 2023.

Chen M, Mei S, Fan J, Wang M. An overview of diffusion models: applications, guided generation, statistical rates and optimization. Preprint at https://arxiv.org/abs/2404.07771.

Gruver N, Stanton S, Kirichenko P, Finzi M, Maffettone P, Myers V, et al. Effective surrogate models for protein design with bayesian optimization. In: International Conference on Machine Learning Work Comput Biol. 2021; Virtual.

Olsen TH, Boyles F, Deane CM. Observed antibody space: a diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci. 2022;31:141–6.

Article  CAS  PubMed  Google Scholar 

Schneider C, Raybould MIJ, Deane CM. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 2022;50:D1368–D72.

Article  CAS  PubMed  Google Scholar

留言 (0)

沒有登入
gif