Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14:49.
Article PubMed Central PubMed Google Scholar
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61.
Article CAS PubMed Google Scholar
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1.
Article CAS PubMed Central PubMed Google Scholar
Hummer AM, Abanades B, Deane CM. Advances in computational structure-based antibody design. Curr Opin Struct Biol. 2022;74:102379.
Article CAS PubMed Google Scholar
Bradbury AR, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29:245–54.
Article CAS PubMed Central PubMed Google Scholar
Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216.
Article CAS PubMed Central PubMed Google Scholar
Edward Zhou X, Melcher K, Eric Xu H. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 2019;28:487–501.
Article CAS PubMed Google Scholar
Zhao LH, Lin J, Ji SY, Zhou XE, Mao C, Shen DD, et al. Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor. Nat Commun. 2022;13:6670.
Article CAS PubMed Central PubMed Google Scholar
Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications. Curr Opin Biotechnol. 2019;60:153–8.
Article CAS PubMed Central PubMed Google Scholar
Schroeder HW Jr., Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41–52.
Article PubMed Central PubMed Google Scholar
Chungyoun M, Gray JJ. AI models for protein design are driving antibody engineering. Curr Opin Biomed Eng. 2023;28:100473.
Article CAS PubMed Google Scholar
Inbar D, Hochman J, Givol D. Localization of antibody-combining sites within the variable portions of heavy and light chains. Proc Natl Acad Sci USA. 1972;69:2659–62.
Article CAS PubMed Central PubMed Google Scholar
Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev. 2018;47:9137–57.
Article CAS PubMed Google Scholar
Cannon DA, Shan L, Du Q, Shirinian L, Rickert KW, Rosenthal KL, et al. Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design. PLoS Comput Biol. 2019;15:e1006980.
Article CAS PubMed Central PubMed Google Scholar
Parkinson J, Hard R, Wang W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat Commun. 2023;14:454.
Article CAS PubMed Central PubMed Google Scholar
Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng. 2021;5:600–12.
Article CAS PubMed Google Scholar
Norman RA, Ambrosetti F, Bonvin A, Colwell LJ, Kelm S, Kumar S, et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform. 2020;21:1549–67.
Shitong L, Yufeng S, Xingang P, Sheng W, Jian P, Jianzhu M. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. In: Neural Information Processing; 2022; New Orleans, LA, USA.
Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, et al. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12:2403.
Article CAS PubMed Central PubMed Google Scholar
Hawkins-Hooker A, Depardieu F, Baur S, Couairon G, Chen A, Bikard D. Generating functional protein variants with variational autoencoders. PLoS Comput Biol. 2021;17:e1008736.
Article CAS PubMed Central PubMed Google Scholar
Kucera T, Togninalli M, Meng-Papaxanthos L. Conditional generative modeling for de novo protein design with hierarchical functions. Bioinformatics. 2022;38:3454–61.
Article CAS PubMed Central PubMed Google Scholar
Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, et al. Large language models generate functional protein sequences across diverse families. Nat Biotechnol. 2023;41:1099–106.
Article CAS PubMed Central PubMed Google Scholar
Ruffolo JA, Madani A. Designing proteins with language models. Nat Biotechnol. 2024;42:200–2.
Article CAS PubMed Google Scholar
Hayes T, Rao R, Akin H, Sofroniew NJ, Oktay D, Lin Z, et al. Simulating 500 million years of evolution with a language model. Preprint at https://doi.org/10.1101/2024.07.01.600583.
Strokach A, Kim PM. Deep generative modeling for protein design. Curr Opin Struct Biol. 2022;72:226–36.
Article CAS PubMed Google Scholar
Guo Z, Liu J, Wang Y, Chen M, Wang D, Xu D, et al. Diffusion models in bioinformatics and computational biology. Nat Rev Bioeng. 2024;2:136–54.
Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. De novo design of protein structure and function with RFdiffusion. Nature. 2023;620:1089–100.
Article CAS PubMed Central PubMed Google Scholar
Isert C, Atz K, Schneider G. Structure-based drug design with geometric deep learning. Curr Opin Struct Biol. 2023;79:102548.
Article CAS PubMed Google Scholar
Guan J, Qian WW, Peng X, Su Y, Peng J, Ma J. 3D equivariant diffusion for target-aware molecule generation and affinity prediction. In: International Conference on Learning Representations. Kigali, Rwanda: Machine Learning for Sciences; 2023; Kigali, Rwanda.
Morehead A, Cheng J. Geometry-complete diffusion for 3d molecule generation. In: International Conference on Learning Representations. Mach Learn Drug Discovery Work; 2023.
Jing B, Corso G, Chang J, Barzilay R, Jaakkola T. Torsional diffusion for molecular conformer generation. Adv Neural Inf Process Syst. 2022;35:24240–53.
Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. Diffdock: diffusion steps, twists, and turns for molecular docking. In: International Conference on Learning Representations. Kigali, Rwanda: Machine Learning for Sciences; 2023.
Chen M, Mei S, Fan J, Wang M. An overview of diffusion models: applications, guided generation, statistical rates and optimization. Preprint at https://arxiv.org/abs/2404.07771.
Gruver N, Stanton S, Kirichenko P, Finzi M, Maffettone P, Myers V, et al. Effective surrogate models for protein design with bayesian optimization. In: International Conference on Machine Learning Work Comput Biol. 2021; Virtual.
Olsen TH, Boyles F, Deane CM. Observed antibody space: a diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci. 2022;31:141–6.
Article CAS PubMed Google Scholar
Schneider C, Raybould MIJ, Deane CM. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 2022;50:D1368–D72.
留言 (0)