Preliminary study of feasibility of surface-guided radiotherapy with concurrent tumor treating fields for glioblastoma: region of interest

Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.

Article  CAS  PubMed  Google Scholar 

Stupp R, Taillibert S, Kanner AA, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taphoorn MJB, Dirven L, Kanner AA, et al. Influence of treatment with tumor-treating fields on health-related quality of life of patients with newly diagnosed glioblastoma: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(4):495–504.

Article  PubMed  PubMed Central  Google Scholar 

Lok E, Swanson KD, Wong ET. Tumor treating fields therapy device for glioblastoma: physics and clinical practice considerations. Expert Rev Med Devices. 2015;12(6):717–26.

Article  CAS  PubMed  Google Scholar 

Nabors LB, Portnow J, Ahluwalia M, et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2020;18(11):1537–70.

Article  Google Scholar 

Giladi M, Munster M, Schneiderman RS, et al. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol. 2017;12(1):1–13.

Article  Google Scholar 

Bokstein F, Blumenthal D, Limon D, et al. Concurrent tumor treating fields (TTFields) and radiation therapy for newly diagnosed glioblastoma: a prospective safety and feasibility study. Front Oncol. 2020;10:411.

Article  PubMed  PubMed Central  Google Scholar 

Song A, Bar-Ad V, Martinez N, et al. Initial experience with scalp sparing radiation with concurrent temozolomide and tumor treatment fields (SPARE) for patients with newly diagnosed glioblastoma. J Neurooncol. 2020;147:653–61.

Article  CAS  PubMed  Google Scholar 

Ali AS, Lombardo J, Niazi MZ, et al. Concurrent chemoradiation and Tumor Treating Fields (TTFields, 200 kHz) for patients with newly diagnosed glioblastoma: patterns of progression in a single institution pilot study. J Neurooncol. 2022;160(2):345–50.

Article  CAS  PubMed  Google Scholar 

Shi W, Roberge D, Kleinberg L, et al. Phase 3 TRIDENT study (EF-32): Tumor treating fields (TTFields; 200 kHz) concomitant with chemoradiation, and maintenance TTFields therapy/temozolomide in newly diagnosed glioblastoma. J Clin Oncol. 2023;41(16):TPS2083.

Article  Google Scholar 

Toms SA, Kim CY, Nicholas G, et al. Increased compliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma: a subgroup analysis of the EF-14 phase III trial. J Neurooncol. 2019;141:467–73.

Article  CAS  PubMed  Google Scholar 

Straube C, Oechsner M, Kampfer S, et al. Dosimetric impact of tumor treating field (TTField) transducer arrays onto treatment plans for glioblastomas—a planning study. Radiat Oncol. 2018;13(1):1–10.

Article  Google Scholar 

Guberina N, Pöttgen C, Kebir S, et al. Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: dosimetric consequences on non-coplanar IMRT as initial results from a phase I trial. Radiat Oncol. 2020;15(1):1–11.

Article  Google Scholar 

Nour Y, Pöttgen C, Kebir S, et al. Dosimetric impact of the positioning variation of tumor treating field electrodes in the PriCoTTF-phase I/II trial. J Appl Clin Med Phys. 2021;22(1):242–50.

Article  PubMed  PubMed Central  Google Scholar 

Biswas S, Kapitanova I, Divekar S, et al. Targeting accuracy considerations for simultaneous tumor treating fields antimitotic therapy during robotic hypofractionated radiation therapy. Technol Cancer Res Treat. 2021;20(1):1–9.

Google Scholar 

Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24(6):1679–91.

Article  PubMed  Google Scholar 

Pan M, Xiao Y, Zhu L, et al. Evaluation of interfraction setup uncertainty of patients with glioblastoma wearing TTFields (Tumor Treating Fields) during radiation therapy. Pract Radiat Oncol. 2023;13(6):522–30.

Article  PubMed  Google Scholar 

Lin T, Ma CMC. Positioning errors of metal localization devices with motion artifacts on kV and MV cone beam CT. BJR Open. 2019;1:20190013.

PubMed  PubMed Central  Google Scholar 

Al-Hallaq HA, Cerviño L, Gutierrez AN, et al. AAPM task group report 302: surface-guided radiotherapy. Med Phys. 2022;49(4):e82–112.

Article  PubMed  Google Scholar 

Wei W, Ioannides PJ, Sehgal V, et al. Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys. 2020;21(6):73–82.

Article  PubMed  PubMed Central  Google Scholar 

Lee SK, Huang S, Zhang L, et al. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys. 2021;22(5):48–57.

Article  PubMed  PubMed Central  Google Scholar 

Bry V, Saenz D, Pappas E, et al. End to end comparison of surface-guided imaging versus stereoscopic X-rays for the SRS treatment of multiple metastases with a single isocenter using 3D anthropomorphic gel phantoms. J Appl Clin Med Phys. 2022;23(5): e13576.

Article  PubMed  PubMed Central  Google Scholar 

Pietro M, et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016;41(2):173–9.

Article  Google Scholar 

Yue NJ, Knisely JPS, Song H, et al. A method to implement full six-degree target shift corrections for rigid body in image-guided radiotherapy. Med Phys. 2006;33(1):21–31.

Article  PubMed  Google Scholar 

Schreibmann E, Crocker I, Dhabaan A, et al. Automated plan quality assurance integrated with eclipse using varian’s ESAPI interface. Med Phys. 2016;43(6):3712–3712.

Article  Google Scholar 

Lucido JJ, Shiraishi S, Seetamsetty S, et al. Automated testing platform for radiotherapy treatment planning scripts. J Appl Clin Med Phys. 2023;24(1): e13845.

Article  PubMed  Google Scholar 

Li P, Wang R, Wang Y, et al. Evaluation of the ICP algorithm in 3D point cloud registration. IEEE Access. 2020;8:68030–48.

Article  Google Scholar 

Laaksomaa M, Moser T, Kritz J, et al. Comparison of three differently shaped ROIs in free breathing breast radiotherapy setup using surface guidance with AlignRT®. Rep Pract Oncol Radiother. 2021;26(4):545–52.

PubMed  PubMed Central  Google Scholar 

Sauer TO, Ott OJ, Lahmer G, et al. Region of interest optimization for surface guided radiation therapy of breast cancer. J Appl Clin Med Phys. 2021;22(10):152–60.

Article  PubMed  PubMed Central  Google Scholar 

Song Y, Zhai X, Liang Y, et al. Evidence-based region of interest (ROI) definition for surface-guided radiotherapy (SGRT) of abdominal cancers using deep-inspiration breath-hold (DIBH). J Appl Clin Med Phys. 2022;23(11): e13748.

Article  PubMed  PubMed Central  Google Scholar 

Kang HJ, Grelewicz Z, Wiersma RD. Development of an automated region of interest selection method for 3D surface monitoring of head motion. Med Phys. 2012;39(6 Part 1):3270–82.

Article  CAS  PubMed  Google Scholar 

Wiersma RD, Tomarken SL, Grelewicz Z, et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013;40(11): 111712.

Article  PubMed  Google Scholar 

Bry V, Licon AL, McCulloch J, et al. Quantifying false positional corrections due to facial motion using SGRT with open-face masks. J Appl Clin Med Phys. 2021;22(4):172–83.

Article  PubMed  PubMed Central  Google Scholar 

Sagawa T, Ohira S, Ueda Y, et al. Dosimetric effect of rotational setup errors in stereotactic radiosurgery with HyperArc for single and multiple brain metastases. J Appl Clin Med Phys. 2019;20(10):84–91.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif