Adaptor protein Src-homology 2 domain containing E (SH2E) deficiency induces heart defect in zebrafish

Waksman G, Kumaran S, Lubman O. SH2 domains: role, structure and implications for molecular medicine. Expert Rev Mol Med. 2004;6:1–18.

Article  PubMed  Google Scholar 

Huang YJ, Zhu L, Tan JY, Guo WC, Yang Z, Shi WH, et al. Correlation between SHP-1 and carotid plaque vulnerability in humans. Cardiovasc Pathol. 2020;49:107258.

Article  CAS  PubMed  Google Scholar 

Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.

Article  CAS  PubMed  Google Scholar 

Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–8.

Article  CAS  PubMed  Google Scholar 

Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet. 2002;39:571–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu YG, Tan H, Ma Q, Li XX, Cui J, Zhang X, et al. SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway. Hum Cell. 2021;34:325–34.

Article  CAS  PubMed  Google Scholar 

Kontaridis MI, Yang WT, Bence KK, Cullen Darragh, Wang B, Bodyak N, et al. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal–regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation. 2008;117:1423–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development. 2014;141:1961–70.

Article  CAS  PubMed  Google Scholar 

Flynn DC. Adaptor proteins. Oncogene. 2001;20:6270–2.

Article  CAS  PubMed  Google Scholar 

Diogo CV, Suski JM, Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Pronicki M, et al. Cardiac mitochondrial dysfunction during hyperglycemia—the role of oxidative stress and p66Shc signaling. Int J Biochem Cell Biol. 2013;45:114–22.

Article  CAS  PubMed  Google Scholar 

Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, et al. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J. 2015;36:516–26.

Article  CAS  PubMed  Google Scholar 

Oda T, Kujovich J, Reis M, Newman B, Druker BJ, et al. Identification and characterization of two novel SH2 domain-containing proteins from a yeast two hybrid screen with the ABL tyrosine kinase. Oncogene. 1997;15:1255–62.

Article  CAS  PubMed  Google Scholar 

Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature‐specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn. 2009;238:1836–50.

Article  CAS  PubMed  Google Scholar 

Chen J, Zhu RF, Li FF, Liang YL, Wang C, Qin YW, et al. MicroRNA-126a directs lymphangiogenesis through interacting with chemokine and Flt4 signaling in zebrafish. Arterioscler Thromb Vasc Biol. 2016;36:2381–93.

Article  CAS  PubMed  Google Scholar 

Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006;313:1922–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.

Article  CAS  PubMed  Google Scholar 

Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech. 2014;7:763–7.

Article  PubMed  PubMed Central  Google Scholar 

Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ. Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003;228:30–40.

Article  CAS  PubMed  Google Scholar 

Kawakami K, Takeda H, Kawakami N, Kobasashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 2004;7:133–44.

Article  CAS  PubMed  Google Scholar 

Brown DR, Samsa LA, Qian L, Liu JD. Advances in the study of heart development and disease using zebrafish. J Cardiovasc Dev Dis. 2016;3:13.

PubMed  PubMed Central  Google Scholar 

Stainier DY. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2001;2:39–48.

Article  CAS  PubMed  Google Scholar 

Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91:279–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Rosa JM. Zebrafish models of cardiac disease: From fortuitous mutants to precision medicine. Cir Res. 2022;130:1803–26.

Article  Google Scholar 

Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26:702–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug II RG, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491:114–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li FF, Liang YL, Han XS, Guan YN, Chen J, Wu P, et al. ADP receptor P2y12 prevents excessive primitive hematopoiesis in zebrafish by inhibiting Gata1. Acta Pharmacol Sin. 2021;42:414–21.

Article  CAS  PubMed  Google Scholar 

Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3:59–69.

Article  CAS  PubMed  Google Scholar 

He JB, Mo DS, Chen JY, Luo LF. Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae. Nat Protoc. 2020;15:3361–79.

Article  CAS  PubMed  Google Scholar 

Copper JE, Budgeon LR, Foutz CA, van Rossum DB, Vanselow DJ, hubley MJ, et al. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2018;208:38–46.

Article  CAS  PubMed  Google Scholar 

Zhang RL, Yang JC, Zhu J, Xu XL. Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere–membrane interaction, not sarcomere assembly. Hum Mol G

留言 (0)

沒有登入
gif