Waksman G, Kumaran S, Lubman O. SH2 domains: role, structure and implications for molecular medicine. Expert Rev Mol Med. 2004;6:1–18.
Huang YJ, Zhu L, Tan JY, Guo WC, Yang Z, Shi WH, et al. Correlation between SHP-1 and carotid plaque vulnerability in humans. Cardiovasc Pathol. 2020;49:107258.
Article CAS PubMed Google Scholar
Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.
Article CAS PubMed Google Scholar
Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–8.
Article CAS PubMed Google Scholar
Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet. 2002;39:571–4.
Article CAS PubMed PubMed Central Google Scholar
Lu YG, Tan H, Ma Q, Li XX, Cui J, Zhang X, et al. SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway. Hum Cell. 2021;34:325–34.
Article CAS PubMed Google Scholar
Kontaridis MI, Yang WT, Bence KK, Cullen Darragh, Wang B, Bodyak N, et al. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal–regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation. 2008;117:1423–35.
Article CAS PubMed PubMed Central Google Scholar
Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development. 2014;141:1961–70.
Article CAS PubMed Google Scholar
Flynn DC. Adaptor proteins. Oncogene. 2001;20:6270–2.
Article CAS PubMed Google Scholar
Diogo CV, Suski JM, Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Pronicki M, et al. Cardiac mitochondrial dysfunction during hyperglycemia—the role of oxidative stress and p66Shc signaling. Int J Biochem Cell Biol. 2013;45:114–22.
Article CAS PubMed Google Scholar
Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, et al. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J. 2015;36:516–26.
Article CAS PubMed Google Scholar
Oda T, Kujovich J, Reis M, Newman B, Druker BJ, et al. Identification and characterization of two novel SH2 domain-containing proteins from a yeast two hybrid screen with the ABL tyrosine kinase. Oncogene. 1997;15:1255–62.
Article CAS PubMed Google Scholar
Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature‐specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn. 2009;238:1836–50.
Article CAS PubMed Google Scholar
Chen J, Zhu RF, Li FF, Liang YL, Wang C, Qin YW, et al. MicroRNA-126a directs lymphangiogenesis through interacting with chemokine and Flt4 signaling in zebrafish. Arterioscler Thromb Vasc Biol. 2016;36:2381–93.
Article CAS PubMed Google Scholar
Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006;313:1922–7.
Article CAS PubMed PubMed Central Google Scholar
Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707–20.
Article CAS PubMed Google Scholar
Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech. 2014;7:763–7.
Article PubMed PubMed Central Google Scholar
Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ. Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003;228:30–40.
Article CAS PubMed Google Scholar
Kawakami K, Takeda H, Kawakami N, Kobasashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 2004;7:133–44.
Article CAS PubMed Google Scholar
Brown DR, Samsa LA, Qian L, Liu JD. Advances in the study of heart development and disease using zebrafish. J Cardiovasc Dev Dis. 2016;3:13.
PubMed PubMed Central Google Scholar
Stainier DY. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2001;2:39–48.
Article CAS PubMed Google Scholar
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91:279–88.
Article CAS PubMed PubMed Central Google Scholar
González-Rosa JM. Zebrafish models of cardiac disease: From fortuitous mutants to precision medicine. Cir Res. 2022;130:1803–26.
Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26:702–8.
Article CAS PubMed PubMed Central Google Scholar
Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug II RG, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491:114–8.
Article CAS PubMed PubMed Central Google Scholar
Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227–9.
Article CAS PubMed PubMed Central Google Scholar
Li FF, Liang YL, Han XS, Guan YN, Chen J, Wu P, et al. ADP receptor P2y12 prevents excessive primitive hematopoiesis in zebrafish by inhibiting Gata1. Acta Pharmacol Sin. 2021;42:414–21.
Article CAS PubMed Google Scholar
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3:59–69.
Article CAS PubMed Google Scholar
He JB, Mo DS, Chen JY, Luo LF. Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae. Nat Protoc. 2020;15:3361–79.
Article CAS PubMed Google Scholar
Copper JE, Budgeon LR, Foutz CA, van Rossum DB, Vanselow DJ, hubley MJ, et al. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2018;208:38–46.
Article CAS PubMed Google Scholar
Zhang RL, Yang JC, Zhu J, Xu XL. Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere–membrane interaction, not sarcomere assembly. Hum Mol G
留言 (0)