Zhao, L.-Y., Song, J., Liu, Y., Song, C.-X. & Yi, C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11, 792–808 (2020).
Article CAS PubMed PubMed Central Google Scholar
Raiber, E.-A., Hardisty, R., van Delft, P. & Balasubramanian, S. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1, 0069 (2017).
Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674–695 (2020).
Article CAS PubMed Google Scholar
Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).
Article CAS PubMed PubMed Central Google Scholar
Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).
Article CAS PubMed PubMed Central Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
Article CAS PubMed Google Scholar
Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).
Article CAS PubMed PubMed Central Google Scholar
Blanco, E., González-Ramírez, M., Alcaine-Colet, A., Aranda, S. & Di Croce, L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 36, 118–131 (2020).
Article CAS PubMed Google Scholar
Gu, T. et al. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat. Genet. 54, 625–636 (2022).
Article CAS PubMed PubMed Central Google Scholar
Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14, 23–31 (2017).
Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).
Article CAS PubMed Google Scholar
Bartee, D., Thalalla Gamage, S., Link, C. N. & Meier, J. L. Arrow pushing in RNA modification sequencing. Chem. Soc. Rev. 50, 9482–9502 (2021).
Article CAS PubMed Google Scholar
Wang, Y., Zhang, X., Liu, H. & Zhou, X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem. Soc. Rev. 50, 13481–13497 (2021).
Article CAS PubMed Google Scholar
Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat. Methods 16, 323–325 (2019).
Article CAS PubMed PubMed Central Google Scholar
Weiner, A. et al. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat. Biotechnol. 34, 953–961 (2016).
Article CAS PubMed Google Scholar
Zhong, S., Li, Z., Jiang, T., Li, X. & Wang, H. Immunofluorescence imaging strategy for evaluation of the accessibility of DNA 5-hydroxymethylcytosine in chromatins. Anal. Chem. 89, 5702–5706 (2017).
Article CAS PubMed Google Scholar
Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. 50, 7008–7012 (2011).
Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014).
Article CAS PubMed Google Scholar
Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).
Article CAS PubMed Google Scholar
Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).
Article CAS PubMed PubMed Central Google Scholar
Trcek, T. et al. Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nat. Protoc. 7, 408–419 (2012).
Article CAS PubMed PubMed Central Google Scholar
Cao, X. et al. Hierarchical DNA branch assembly-encoded fluorescent nanoladders for single-cell transcripts imaging. Nucleic Acids Res. 51, e13–e13 (2023).
Article CAS PubMed Google Scholar
Cao, X. et al. RNA-primed amplification for noise-suppressed visualization of single-cell splice variants. Anal. Chem. 92, 9356–9361 (2020).
Article CAS PubMed Google Scholar
Zhang, K., Deng, R., Gao, H., Teng, X. & Li, J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem. Soc. Rev. 49, 1932–1954 (2020).
Article CAS PubMed Google Scholar
Chen, F., Xue, J., Bai, M., Fan, C. & Zhao, Y. Lighting up nucleic acid modifications in single cells with DNA-encoded amplification. Acc. Chem. Res. 55, 2248–2259 (2022).
Article CAS PubMed Google Scholar
Bai, M. et al. Bioorthogonal chemical signature enabling amplified visualization of cellular oxidative thymines. Anal. Chem. 93, 10495–10501 (2021).
Article CAS PubMed Google Scholar
Xue, J. et al. Pairwise proximity-differentiated visualization of single-cell DNA epigenetic marks. Angew. Chem. Int. Ed. 60, 3428–3432 (2021).
Xue, J. et al. Branched immunochip-integrated pairwise barcoding amplification exploring the spatial proximity of two post-translational modifications in distinct cell subpopulations. Chem. Commun. 58, 10020–10023 (2022).
Chen, F. et al. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat. Commun. 12, 1965 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chen, F. et al. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Res. 47, e145–e145 (2019).
Article PubMed PubMed Central Google Scholar
Wang, Y. et al. Detection and application of 5-formylcytosine and 5-formyluracil in DNA. Acc. Chem. Res 52, 1016–1024 (2019).
Article CAS PubMed Google Scholar
Chen, F. et al. Programming enzyme-initiated autonomous DNAzyme nanodevices in living cells. ACS Nano 11, 11908–11914 (2017).
留言 (0)