Visualizing epigenetic modifications and their spatial proximities in single cells using three DNA-encoded amplifying FISH imaging strategies: BEA-FISH, PPDA-FISH and Cell-TALKING

Zhao, L.-Y., Song, J., Liu, Y., Song, C.-X. & Yi, C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11, 792–808 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raiber, E.-A., Hardisty, R., van Delft, P. & Balasubramanian, S. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1, 0069 (2017).

Article  CAS  Google Scholar 

Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674–695 (2020).

Article  CAS  PubMed  Google Scholar 

Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

Article  CAS  PubMed  Google Scholar 

Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco, E., González-Ramírez, M., Alcaine-Colet, A., Aranda, S. & Di Croce, L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 36, 118–131 (2020).

Article  CAS  PubMed  Google Scholar 

Gu, T. et al. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat. Genet. 54, 625–636 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14, 23–31 (2017).

Article  CAS  Google Scholar 

Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

Article  CAS  PubMed  Google Scholar 

Bartee, D., Thalalla Gamage, S., Link, C. N. & Meier, J. L. Arrow pushing in RNA modification sequencing. Chem. Soc. Rev. 50, 9482–9502 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, Y., Zhang, X., Liu, H. & Zhou, X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem. Soc. Rev. 50, 13481–13497 (2021).

Article  CAS  PubMed  Google Scholar 

Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat. Methods 16, 323–325 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiner, A. et al. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat. Biotechnol. 34, 953–961 (2016).

Article  CAS  PubMed  Google Scholar 

Zhong, S., Li, Z., Jiang, T., Li, X. & Wang, H. Immunofluorescence imaging strategy for evaluation of the accessibility of DNA 5-hydroxymethylcytosine in chromatins. Anal. Chem. 89, 5702–5706 (2017).

Article  CAS  PubMed  Google Scholar 

Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. 50, 7008–7012 (2011).

Article  CAS  Google Scholar 

Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014).

Article  CAS  PubMed  Google Scholar 

Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).

Article  CAS  PubMed  Google Scholar 

Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trcek, T. et al. Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nat. Protoc. 7, 408–419 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, X. et al. Hierarchical DNA branch assembly-encoded fluorescent nanoladders for single-cell transcripts imaging. Nucleic Acids Res. 51, e13–e13 (2023).

Article  CAS  PubMed  Google Scholar 

Cao, X. et al. RNA-primed amplification for noise-suppressed visualization of single-cell splice variants. Anal. Chem. 92, 9356–9361 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, K., Deng, R., Gao, H., Teng, X. & Li, J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem. Soc. Rev. 49, 1932–1954 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, F., Xue, J., Bai, M., Fan, C. & Zhao, Y. Lighting up nucleic acid modifications in single cells with DNA-encoded amplification. Acc. Chem. Res. 55, 2248–2259 (2022).

Article  CAS  PubMed  Google Scholar 

Bai, M. et al. Bioorthogonal chemical signature enabling amplified visualization of cellular oxidative thymines. Anal. Chem. 93, 10495–10501 (2021).

Article  CAS  PubMed  Google Scholar 

Xue, J. et al. Pairwise proximity-differentiated visualization of single-cell DNA epigenetic marks. Angew. Chem. Int. Ed. 60, 3428–3432 (2021).

Article  CAS  Google Scholar 

Xue, J. et al. Branched immunochip-integrated pairwise barcoding amplification exploring the spatial proximity of two post-translational modifications in distinct cell subpopulations. Chem. Commun. 58, 10020–10023 (2022).

Article  CAS  Google Scholar 

Chen, F. et al. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat. Commun. 12, 1965 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, F. et al. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Res. 47, e145–e145 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Detection and application of 5-formylcytosine and 5-formyluracil in DNA. Acc. Chem. Res 52, 1016–1024 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, F. et al. Programming enzyme-initiated autonomous DNAzyme nanodevices in living cells. ACS Nano 11, 11908–11914 (2017).

留言 (0)

沒有登入
gif