Construction and utilization of a new generation of bacteriophage-based particles, or TPA, for guided systemic delivery of nucleic acids to tumors

Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2007—an update. J. Gene Med. 9, 833–42 (2007).

Article  PubMed  Google Scholar 

Ginn, S. L. et al. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

Article  PubMed  Google Scholar 

Pranjol, M. Z. & Hajitou, A. Bacteriophage-derived vectors for targeted cancer gene therapy. Viruses. 7, 268–84 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Bouard, D., Alazard-Dany, D. & Cosset, F. L. Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 157, 153–65 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

Article  CAS  PubMed  Google Scholar 

Larocca, D. et al. Evolving phage vectors for cell targeted gene delivery. Curr. Pharm. Biotechnol. 3, 45–57 (2002).

Article  CAS  PubMed  Google Scholar 

Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).

Article  CAS  PubMed  Google Scholar 

Barderas, R. & Benito-Peña, E. The 2018 Nobel Prize in Chemistry: phage display of peptides and antibodies. Anal. Bioanal. Chem. 411, 2475–2479 (2019).

Article  CAS  PubMed  Google Scholar 

Stoneham, C. A., Hollinshead, M. & Hajitou, A. Clathrin-mediated endocytosis and subsequent endo-lysosomal trafficking of adeno-associated virus/phage. J. Biol. Chem. 287, 35849–59 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endersen, L. et al. Phage therapy in the food industry. Annu. Rev. Food Sci. Technol. 5, 327–49 (2014).

Article  CAS  PubMed  Google Scholar 

Asavarut, P. & Hajitou, A. The phage revolution against antibiotic resistance. Lancet Infect. Dis. 14, 686 (2014).

Article  Google Scholar 

Hajitou, A. et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125, 385–98 (2006).

Article  CAS  PubMed  Google Scholar 

Hajitou, A. et al. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat. Protoc. 2, 523–31 (2007).

Article  CAS  PubMed  Google Scholar 

Koivunen, E., Wang, B. & Ruoslahti, E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Nat Biotechnol 13, 265–270 (1995).

Article  CAS  Google Scholar 

Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279, 377–80 (1998).

Article  CAS  PubMed  Google Scholar 

Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–71 (1994).

Article  CAS  PubMed  Google Scholar 

Przystal, J. M. et al. Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol. Med. 11, e8492 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Paoloni, M. C. et al. Launching a novel preclinical infrastructure: comparative oncology trials consortium directed therapeutic targeting of TNFalpha to cancer vasculature. PLoS ONE. 4, e4972 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Suwan, K. et al. Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer. Proc. Natl Acad. Sci. USA 116, 18571–18577 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Przystal, J. M. et al. Proteasome inhibition in cancer is associated with enhanced tumor targeting by the adeno-associated virus/phage. Mol. Oncol. 7, 55–66 (2013).

Article  CAS  PubMed  Google Scholar 

Kia, A. et al. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells. Viruses. 5, 2561–72 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Yata, T. et al. Modulation of extracellular matrix in cancer is associated with enhanced tumor cell targeting by bacteriophage vectors. Mol. Cancer. 14, 110 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Yata, T. et al. Hybrid nanomaterial complexes for advanced phage-guided gene delivery. Mol. Ther. Nucleic Acids. 3, e185 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsafa, E. et al. Doxorubicin improves cancer cell targeting by filamentous phage gene delivery vectors. Int. J. Mol. Sci. 21, 7867 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tandle, A. et al. Tumor vasculature-targeted delivery of tumor necrosis factor-alpha. Cancer. 115, 128–39 (2009).

Article  CAS  PubMed  Google Scholar 

Asavarut, P. et al. Systemically targeted cancer immunotherapy and gene delivery using transmorphic particles. EMBO Mol. Med. 14, e15418 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larocca, D. et al. Receptor-targeted gene delivery using multivalent phagemid particles. Mol. Ther. 3, 476–84 (2001).

Article  CAS  PubMed  Google Scholar 

Monjezi, R. et al. Purification of bacteriophage M13 by anion exchange chromatography. J. Chromatogr. B 878, 1855–9 (2010).

Article  CAS  Google Scholar 

Chongchai, A. et al. Targeting human osteoarthritic chondrocytes with ligand directed bacteriophage-based particles. Viruses. 13, 2343 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. et al. Preparation of a bacteriophage T4-based prokaryotic–eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Bio. Protoc. 10, e3573 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat. Commun. 14, 2928 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. et al. A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Sci. Adv. 5, eaax0064 (2019).

Article  CAS 

留言 (0)

沒有登入
gif