Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).
Article CAS PubMed Google Scholar
Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).
Article CAS PubMed Google Scholar
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).
Article CAS PubMed Google Scholar
Su, Y. et al. Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 3, 1020–1030 (2022).
Zhao, L. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).
Zhang, P. et al. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 864–876 (2021).
Demirer, G. S. et al. Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, M. et al. Nano-enabled strategies to enhance biological nitrogen fixation. Nat. Nanotechnol. 18, 688–691 (2023).
Article CAS PubMed Google Scholar
Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).
Article CAS PubMed Google Scholar
Luo, X. et al. Nanomaterial size and surface modification mediate disease resistance activation in cucumber (Cucumis sativus). ACS Nano 17, 4871–4885 (2023).
Article CAS PubMed Google Scholar
Ashfaq, M., Verma, N. & Khan, S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ. Sci. Nano 4, 138–148 (2017).
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant. Nat. Commun. 14, 5622 (2023).
Article CAS PubMed PubMed Central Google Scholar
Liang, W. et al. pH-responsive on-demand alkaloids release from core–shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano 16, 2762–2773 (2022).
Article CAS PubMed Google Scholar
Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor–nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).
Article CAS PubMed Google Scholar
Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022).
Article CAS PubMed Google Scholar
Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 14, 523–531 (2019).
Article CAS PubMed Google Scholar
Pagano, L. et al. Engineered nanomaterial exposure affects organelle genetic material replication in Arabidopsis thaliana. ACS Nano 16, 2249–2260 (2022).
Article CAS PubMed Google Scholar
Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).
Article CAS PubMed Google Scholar
Sun, X.-D. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).
Article CAS PubMed Google Scholar
Demirer, G. S. Detecting and quantifying nanoparticle-mediated biomolecule delivery in plants. Nat. Rev. Methods Prim. 3, 16 (2023).
Zhao, B., Luo, Z., Zhang, H. & Zhang, H. Imaging tools for plant nanobiotechnology. Front. Genome Ed. 4, 1029944 (2022).
Article PubMed PubMed Central Google Scholar
Neves, V. M. et al. La2O3 nanoparticles: study of uptake and distribution in Pfaffia glomerata (Spreng.) Pedersen by LA-ICP-MS and μ-XRF. Environ. Sci. Technol. 53, 10827–10834 (2019).
Article CAS PubMed Google Scholar
Avellan, A. et al. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol. 51, 8682–8691 (2017).
Article CAS PubMed Google Scholar
Donaldson, L. Autofluorescence in plants. Molecules 25, 2393 (2020).
Article CAS PubMed PubMed Central Google Scholar
Klymchenko, A. S. et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2, 11876–11886 (2012).
Article CAS PubMed Google Scholar
Trofymchuk, K. et al. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. J. Mater. Chem. B 7, 5199–5210 (2019).
Article CAS PubMed Google Scholar
Zhou, Y. et al. Self-immolative dye-doped polymeric probe for precisely imaging hydroxyl radicals by avoiding leakage. Anal. Chem. 93, 12944–12953 (2021).
Article CAS PubMed Google Scholar
Tiede, K. et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 25, 795–821 (2008).
Kempen, P. J., Thakor, A. S., Zavaleta, C., Gambhir, S. S. & Sinclair, R. A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19, 1290–1297 (2013).
Article CAS PubMed PubMed Central Google Scholar
Leung, Y. H. et al. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions. Appl. Microbiol. Biotechnol. 101, 5469–5479 (2017).
留言 (0)