Precise tracking of nanoparticles in plant roots

Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

Article  CAS  PubMed  Google Scholar 

Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

Article  CAS  PubMed  Google Scholar 

Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

Article  CAS  PubMed  Google Scholar 

Su, Y. et al. Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 3, 1020–1030 (2022).

Article  PubMed  Google Scholar 

Zhao, L. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).

Article  PubMed  Google Scholar 

Zhang, P. et al. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 864–876 (2021).

Article  PubMed  Google Scholar 

Demirer, G. S. et al. Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Nano-enabled strategies to enhance biological nitrogen fixation. Nat. Nanotechnol. 18, 688–691 (2023).

Article  CAS  PubMed  Google Scholar 

Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

Article  CAS  PubMed  Google Scholar 

Luo, X. et al. Nanomaterial size and surface modification mediate disease resistance activation in cucumber (Cucumis sativus). ACS Nano 17, 4871–4885 (2023).

Article  CAS  PubMed  Google Scholar 

Ashfaq, M., Verma, N. & Khan, S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ. Sci. Nano 4, 138–148 (2017).

Article  CAS  Google Scholar 

Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant. Nat. Commun. 14, 5622 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, W. et al. pH-responsive on-demand alkaloids release from core–shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano 16, 2762–2773 (2022).

Article  CAS  PubMed  Google Scholar 

Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor–nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022).

Article  CAS  PubMed  Google Scholar 

Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 14, 523–531 (2019).

Article  CAS  PubMed  Google Scholar 

Pagano, L. et al. Engineered nanomaterial exposure affects organelle genetic material replication in Arabidopsis thaliana. ACS Nano 16, 2249–2260 (2022).

Article  CAS  PubMed  Google Scholar 

Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).

Article  CAS  PubMed  Google Scholar 

Sun, X.-D. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).

Article  CAS  PubMed  Google Scholar 

Demirer, G. S. Detecting and quantifying nanoparticle-mediated biomolecule delivery in plants. Nat. Rev. Methods Prim. 3, 16 (2023).

Article  CAS  Google Scholar 

Zhao, B., Luo, Z., Zhang, H. & Zhang, H. Imaging tools for plant nanobiotechnology. Front. Genome Ed. 4, 1029944 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Neves, V. M. et al. La2O3 nanoparticles: study of uptake and distribution in Pfaffia glomerata (Spreng.) Pedersen by LA-ICP-MS and μ-XRF. Environ. Sci. Technol. 53, 10827–10834 (2019).

Article  CAS  PubMed  Google Scholar 

Avellan, A. et al. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol. 51, 8682–8691 (2017).

Article  CAS  PubMed  Google Scholar 

Donaldson, L. Autofluorescence in plants. Molecules 25, 2393 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klymchenko, A. S. et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2, 11876–11886 (2012).

Article  CAS  PubMed  Google Scholar 

Trofymchuk, K. et al. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. J. Mater. Chem. B 7, 5199–5210 (2019).

Article  CAS  PubMed  Google Scholar 

Zhou, Y. et al. Self-immolative dye-doped polymeric probe for precisely imaging hydroxyl radicals by avoiding leakage. Anal. Chem. 93, 12944–12953 (2021).

Article  CAS  PubMed  Google Scholar 

Tiede, K. et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 25, 795–821 (2008).

Article  CAS  Google Scholar 

Kempen, P. J., Thakor, A. S., Zavaleta, C., Gambhir, S. S. & Sinclair, R. A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19, 1290–1297 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung, Y. H. et al. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions. Appl. Microbiol. Biotechnol. 101, 5469–5479 (2017).

留言 (0)

沒有登入
gif