Mapping protein–DNA interactions with DiMeLo-seq

Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

Article  CAS  PubMed  Google Scholar 

Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

Article  CAS  PubMed  Google Scholar 

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

Article  CAS  PubMed  Google Scholar 

Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

Article  CAS  PubMed  Google Scholar 

van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

Article  PubMed  Google Scholar 

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

Article  Google Scholar 

Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat. Methods 19, 711–723 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P. & van Steensel, B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

Article  CAS  PubMed  Google Scholar 

Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weng, Z. et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol. 24, 61 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue, X. et al. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat. Commun. 13, 1–14 (2022).

Article  Google Scholar 

Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamba, R. et al. Enrichment of centromeric DNA from human cells. PLoS Genet. 18, e1010306 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450 (2021).

Article  CAS  PubMed  Google Scholar 

Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat. Biotechnol. 39, 431–441 (2021).

Article  CAS  PubMed  Google Scholar 

Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogel, M. J., Peric-Hupkes, D. & van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat. Protoc. 2, 1467–1478 (2007).

Article  CAS  PubMed  Google Scholar 

Altemose, N. et al. DiMeLo-Seq: directed methylation with long-read sequencing v2. Protocols.io https://www.protocols.io/view/dimelo-seq-directed-methylation-with-long-read-seq-b2u8qezw (2021).

De Coster, W., Stovner, E. B. & Strazisar, M. Methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36, 3236–3238 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brothers, M. & Rine, J. Distinguishing between recruitment and spread of silent chromatin structures in Saccharomyces cerevisiae. eLife 11, e75653 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivasan, M., Sedmak, D. & Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altemose, N. et al. PA-Hia5 protein expression and purification v1. Protocols.io https://www.protocols.io/view/pa-hia5-protein-expression-and-purification-bv82n9ye (2021).

Altemose, N. et al. AlphaHOR-RES: a method for enriching centromeric DNA v1. Protocols.io https://www.protocols.io/view/alphahor-res-a-method-for-enriching-centromeric-dn-bv9vn966 (2021).

Kim, B. Y. et al. Highly contiguous assemblies of 101 drosophilid genomes. eLife 10, e66405 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, B. Y., Miller, D. E. & Wang, J. DNA extraction and nanopore library prep from 15-30 whole flies v1. Protocols.io

留言 (0)

沒有登入
gif