Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).
Article CAS PubMed PubMed Central Google Scholar
Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).
Article CAS PubMed Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).
Article CAS PubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
Article CAS PubMed Google Scholar
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
Article PubMed PubMed Central Google Scholar
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
Article CAS PubMed Google Scholar
van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat. Methods 19, 711–723 (2022).
Article CAS PubMed PubMed Central Google Scholar
van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P. & van Steensel, B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636 (2020).
Article PubMed PubMed Central Google Scholar
Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).
Article CAS PubMed Google Scholar
Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).
Article CAS PubMed PubMed Central Google Scholar
Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).
Article CAS PubMed PubMed Central Google Scholar
Weng, Z. et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol. 24, 61 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yue, X. et al. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat. Commun. 13, 1–14 (2022).
Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).
Article CAS PubMed PubMed Central Google Scholar
Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).
Article CAS PubMed PubMed Central Google Scholar
Gamba, R. et al. Enrichment of centromeric DNA from human cells. PLoS Genet. 18, e1010306 (2022).
Article CAS PubMed PubMed Central Google Scholar
Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450 (2021).
Article CAS PubMed Google Scholar
Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat. Biotechnol. 39, 431–441 (2021).
Article CAS PubMed Google Scholar
Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411 (2015).
Article CAS PubMed PubMed Central Google Scholar
Vogel, M. J., Peric-Hupkes, D. & van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat. Protoc. 2, 1467–1478 (2007).
Article CAS PubMed Google Scholar
Altemose, N. et al. DiMeLo-Seq: directed methylation with long-read sequencing v2. Protocols.io https://www.protocols.io/view/dimelo-seq-directed-methylation-with-long-read-seq-b2u8qezw (2021).
De Coster, W., Stovner, E. B. & Strazisar, M. Methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36, 3236–3238 (2020).
Article PubMed PubMed Central Google Scholar
Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).
Article CAS PubMed PubMed Central Google Scholar
Brothers, M. & Rine, J. Distinguishing between recruitment and spread of silent chromatin structures in Saccharomyces cerevisiae. eLife 11, e75653 (2022).
Article CAS PubMed PubMed Central Google Scholar
Srinivasan, M., Sedmak, D. & Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971 (2002).
Article CAS PubMed PubMed Central Google Scholar
Altemose, N. et al. PA-Hia5 protein expression and purification v1. Protocols.io https://www.protocols.io/view/pa-hia5-protein-expression-and-purification-bv82n9ye (2021).
Altemose, N. et al. AlphaHOR-RES: a method for enriching centromeric DNA v1. Protocols.io https://www.protocols.io/view/alphahor-res-a-method-for-enriching-centromeric-dn-bv9vn966 (2021).
Kim, B. Y. et al. Highly contiguous assemblies of 101 drosophilid genomes. eLife 10, e66405 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kim, B. Y., Miller, D. E. & Wang, J. DNA extraction and nanopore library prep from 15-30 whole flies v1. Protocols.io
留言 (0)