A bioswitchable delivery system for microRNA therapeutics based on a tetrahedral DNA nanostructure

Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).

Article  CAS  PubMed  Google Scholar 

Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slack, F. J. & Weidhaas, J. B. MicroRNA in cancer prognosis. N. Engl. J. Med. 359, 2720–2722 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olejniczak, M., Galka, P. & Krzyzosiak, W. J. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res. 38, 1–16 (2010).

Article  CAS  PubMed  Google Scholar 

Broderick, J. A. & Zamore, P. D. MicroRNA therapeutics. Gene Ther. 18, 1104–1110 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boloix, A. et al. Engineering pH-sensitive stable nanovesicles for delivery of microRNA therapeutics. Small 18, e2101959 (2022).

Article  PubMed  Google Scholar 

van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, H. et al. Stimuli-responsive nanotechnology for RNA delivery. Adv. Sci. 10, e2303597 (2023).

Article  Google Scholar 

Li, S. et al. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today. 24, 57–68 (2019).

Article  CAS  Google Scholar 

Chen, Y. et al. DNA framework signal amplification platform-based high-throughput immune-cell phenotyping system for rapid systemic immune monitoring. Signal. Transduct. Target. Ther. 9, 28 (2024).

Article  CAS  Google Scholar 

Madhanagopal, B. R. et al. DNA nanocarriers: programmed to deliver. Trends Biochem. Sci. 43, 997–1013 (2018).

Article  CAS  PubMed  Google Scholar 

Ge, Y. et al. Tetrahedral framework nucleic acids connected with microRNA-126 mimics for applications in vascular inflammation, remodeling, and homeostasis. ACS Appl. Mater. Interfaces 14, 19091–19103 (2022).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater. 34, e2202513 (2022).

Article  PubMed  Google Scholar 

Qin, X. et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater. 14, 134–144 (2022).

CAS  PubMed  Google Scholar 

Zhang, M. et al. Transcutaneous immunotherapy for RNAi: a cascade-responsive decomposable nanocomplex based on polyphenol-mediated framework nucleic acid in psoriasis. Adv. Sci. 10, e2303706 (2023).

Article  Google Scholar 

Tian, T. et al. A dynamic DNA tetrahedron framework for active targeting. Nat. Protoc. 18, 1028–1055 (2023).

Article  CAS  PubMed  Google Scholar 

Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).

Article  CAS  PubMed  Google Scholar 

Cerritelli, S. M. & Crouch, R. J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494–1505 (2009).

Article  CAS  PubMed  Google Scholar 

Ohle, C. et al. Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013 (2016).

Article  CAS  PubMed  Google Scholar 

Li, S. et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small 17, e2104359 (2021).

Article  PubMed  Google Scholar 

Li, S. et al. A tetrahedral framework DNA-based bioswitchable miRNA inhibitor delivery system: application to skin anti-aging. Adv. Mater. 34, e2204287 (2022).

Article  PubMed  Google Scholar 

Jiang, Y. et al. A novel bioswitchable miRNA mimic delivery system: therapeutic strategies upgraded from tetrahedral framework nucleic acid system for fibrotic disease treatment and pyroptosis pathway inhibition. Adv. Sci. 11, e2305622 (2023).

Article  Google Scholar 

Afonin, K. A. et al. Triggering of RNA interference with RNA–RNA, RNA–DNA, and DNA–RNA nanoparticles. ACS Nano. 9, 251–259 (2015).

Article  CAS  PubMed  Google Scholar 

Gavette, J. V. et al. RNA–DNA chimeras in the context of an RNA world transition to an RNA/DNA world. Angew. Chem. Int. Ed. Engl. 55, 13204–13209 (2016).

Article  CAS  PubMed  Google Scholar 

Li, S. et al. MicroRNA-214-3p modified tetrahedral framework nucleic acids target survivin to induce tumour cell apoptosis. Cell Prolif. 53, e12708 (2020).

Article  PubMed  Google Scholar 

Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y. et al. A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery. Adv. Mater. 34, e2201731 (2022).

Article  PubMed  Google Scholar 

Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147–1159 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ding, H. et al. DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent. Sci. 4, 1344–1351 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J. et al. The neuroprotective effect of microRNA-22-3p modified tetrahedral framework nucleic acids on damaged retinal neurons via TrkB/BDNF signaling pathway. Adv. Funct. Mater. 31, 2104141 (2021).

Article  CAS  Google Scholar 

Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).

Article  CAS  PubMed  Google Scholar 

Shi, S. et al. Biological effect of differently sized tetrahedral framework nucleic acids: endocytosis, proliferation, migration, and biodistribution. ACS Appl. Mater. Interfaces 13, 57067–57074 (2021).

Article  CAS  PubMed  Google Scholar 

Tian, T. et al. Liver-targeted delivery of small interfering RNA of C–C chemokine receptor 2 with tetrahedral framework nucleic acid attenuates liver cirrhosis. ACS Appl. Mater. Interfaces 15, 10492–10505 (2023).

Article  CAS  PubMed  Google Scholar 

Qin, X. et al. Tetrahedral-framework nucleic acid loaded with microRNA-155 enhances immunocompetence in cyclophosphamide-induced immunosuppressed mice by modulating dendritic cells and macrophages. ACS Appl. Mater. Interfaces 15, 7793–7803 (2023).

留言 (0)

沒有登入
gif