Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).
Article CAS PubMed Google Scholar
Abella, M., Andruck, L., Malengo, G. & Skruzny, M. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Dev. Cell 56, 2419–2426.e4 (2021).
Article CAS PubMed Google Scholar
Déjardin, T. et al. Nesprins are mechanotransducers that discriminate epithelial–mesenchymal transition programs. J. Cell Biol. 219, e201908036 (2020).
Article PubMed PubMed Central Google Scholar
Li, W. et al. A membrane-bound biosensor visualizes shear stress-induced inhomogeneous alteration of cell membrane tension. iScience 7, 180–190 (2018).
Article PubMed PubMed Central Google Scholar
Páez-Pérez, M., López-Duarte, I., Vyšniauskas, A., Brooks, N. J. & Kuimova, M. K. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem. Sci. 12, 2604–2613 (2021).
Assies, L. et al. Flipper probes for the community. Chim. Int. J. Chem. 75, 1004–1011 (2021).
Soleimanpour, S. et al. Headgroup engineering in mechanosensitive membrane probes. Chem. Commun. 52, 14450–14453 (2016).
Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat. Cell Biol. 22, 947–959 (2020).
Article CAS PubMed PubMed Central Google Scholar
Roffay, C. et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc. Natl Acad. Sci. USA 118, e2103228118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ni, Q. et al. Cytoskeletal activation of NHE1 regulates cell volume and DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.31.555808 (2023).
Michels, L. et al. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc. Natl Acad. Sci. USA 117, 18110–18118 (2020).
Article CAS PubMed PubMed Central Google Scholar
Coomer, C. A. et al. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog. 16, e1008359 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jiménez-Rojo, N. et al. Conserved functions of ether lipids and sphingolipids in the early secretory pathway. Curr. Biol. 30, 3775–3787.e7 (2020).
Mylvaganam, S. et al. The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat. Cell Biol. 24, 1226–1238 (2022).
Article CAS PubMed Google Scholar
Lachuer, H., Le, L., Lévêque-Fort, S., Goud, B. & Schauer, K. Spatial organization of lysosomal exocytosis relies on membrane tension gradients. Proc. Natl Acad. Sci. 120, e2207425120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lachowski, D. et al. Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano 16, 4322–4337 (2022).
Article CAS PubMed PubMed Central Google Scholar
Riggi, M. et al. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043–1051 (2018).
Article CAS PubMed PubMed Central Google Scholar
Riggi, M., Kusmider, B. & Loewith, R. The flipside of the TOR coin—TORC2 and plasma membrane homeostasis at a glance. J. Cell Sci. 133, jcs242040 (2020).
Article CAS PubMed Google Scholar
Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).
Article CAS PubMed PubMed Central Google Scholar
Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).
Article CAS PubMed PubMed Central Google Scholar
Schneider, A. F. L., Kithil, M., Cardoso, M. C., Lehmann, M. & Hackenberger, C. P. R. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat. Chem. 13, 530–539 (2021).
Article CAS PubMed Google Scholar
Hetmanski, J. H. R. et al. Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev. Cell 51, 460–475.e10 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yavitt, F. M. et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci. Adv. 9, eadd5668 (2023).
Article PubMed PubMed Central Google Scholar
Goujon, A. et al. Mechanosensitive fluorescent probes to image membrane tension in mitochondria, endoplasmic reticulum, and lysosomes. J. Am. Chem. Soc. 141, 3380–3384 (2019).
Article CAS PubMed Google Scholar
Dal Molin, M. et al. Fluorescent flippers for mechanosensitive membrane probes. J. Am. Chem. Soc. 137, 568–571 (2015).
Article CAS PubMed PubMed Central Google Scholar
García-Sáez, A. J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544 (2007).
Hamada, T., Kishimoto, Y., Nagasaki, T. & Takagi, M. Lateral phase separation in tense membranes. Soft Matter 7, 9061–9068 (2011).
Shimokawa, N. & Hamada, T. Physical concept to explain the regulation of lipid membrane phase separation under isothermal conditions. Life 13, 1105 (2023).
Article CAS PubMed PubMed Central Google Scholar
García-Calvo, J. et al. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem. Sci. 13, 2086–2093 (2022).
Article PubMed PubMed Central Google Scholar
Licari, G., Strakova, K., Matile, S. & Tajkhorshid, E. Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chem. Sci. 11, 5637–5649 (2020).
Article CAS PubMed PubMed Central Google Scholar
Harris, F. M., Best, K. B. & Bell, J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta 1565, 123–128 (2002).
留言 (0)