Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell https://doi.org/10.1016/j.cell.2020.09.014 (2020).
Article PubMed PubMed Central Google Scholar
Agbleke, A. A. et al. Advances in chromatin and chromosome research: perspectives from multiple fields. Mol. Cell. https://doi.org/10.1016/j.molcel.2020.07.003 (2020).
Article PubMed PubMed Central Google Scholar
Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).
Article CAS PubMed Google Scholar
Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. https://doi.org/10.1038/s41576-018-0089-8 (2019).
Shaban, H. A., Barth, R. & Bystricky, K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol. https://doi.org/10.1186/s13059-020-02185-y (2020).
Article PubMed PubMed Central Google Scholar
Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).
Article CAS PubMed PubMed Central Google Scholar
Shaban, H. A. & Seeber, A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa135 (2020).
Article PubMed PubMed Central Google Scholar
Shaban, H. A. & Seeber, A. Monitoring global chromatin dynamics in response to DNA damage. Mutat. Res. https://doi.org/10.1016/j.mrfmmm.2020.111707 (2020).
Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. https://doi.org/10.1016/S0960-9822(06)00412-X (1997).
Levi, V., Ruan, Q., Plutz, M., Belmont, A. S. & Gratton, E. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89, 4275–4285 (2005).
Article CAS PubMed PubMed Central Google Scholar
Germier, T. et al. Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys. J. 113, 1383–1394 (2017).
Article CAS PubMed PubMed Central Google Scholar
Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science https://doi.org/10.1126/science.aao3136 (2018).
Article PubMed PubMed Central Google Scholar
Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with spot-on. eLife https://doi.org/10.7554/eLife.33125 (2018).
Bronstein, I. et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 18102 (2009).
Eshghi, I., Eaton, J. A. & Zidovska, A. Interphase chromatin undergoes a local sol-gel transition upon cell differentiation. Phys. Rev. Lett. 126, 228101 (2021).
Article CAS PubMed PubMed Central Google Scholar
Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1222097110 (2013).
Article PubMed PubMed Central Google Scholar
Hebert, B., Costantino, S. & Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. https://doi.org/10.1529/biophysj.104.054874 (2005).
Article PubMed PubMed Central Google Scholar
Zidovska, A., Weitz, D. A. & Mitchison, T. J. Micron-scale coherence in interphase chromatin dynamics. Proc. Natl Acad. Sci. USA 110, 15555–15560 (2013).
Article CAS PubMed PubMed Central Google Scholar
Shaban, H. A., Barth, R. & Bystricky, K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 46, e77 (2018).
Article PubMed PubMed Central Google Scholar
Shaban, H. A., Barth, R., Recoules, L. & Bystricky, K. Hi-D: nanoscale mapping of nuclear dynamics in single living cells. Genome Biol. 21, 95 (2020).
Article CAS PubMed PubMed Central Google Scholar
Miron, E. et al. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci. Adv. https://doi.org/10.1126/sciadv.aba8811 (2020).
Article PubMed PubMed Central Google Scholar
Barth R, Bystricky K, Shaban HA. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. https://doi.org/10.1126/sciadv.aaz2196 (2020).
Barth, R., Fourel, G. & Shaban, H. A. Dynamics as a cause for the nanoscale organization of the genome. Nucleus 11, 83–98 (2020).
Article CAS PubMed PubMed Central Google Scholar
Barth, R. & Shaban, H. A. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion. Nucleus 13, 194–202 (2022).
Article PubMed PubMed Central Google Scholar
Shaban, H. A. et al. Individual transcription factors modulate both the micromovement of chromatin and its long-range structure. Proc. Natl Acad. Sci. USA 121, e2311374121 (2024).
Article CAS PubMed PubMed Central Google Scholar
Monnier, N. et al. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103, 616–626 (2012).
Article CAS PubMed PubMed Central Google Scholar
Seber, G. & Wild, C. Nonlinear Regression (John Wiley & Sons, 2003).
Schreiber, J. M. & Noble, W. S. Finding the optimal Bayesian network given a constraint graph. Peer J. Comput. Sci. 2017, 1–16 (2017).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Article CAS PubMed PubMed Central Google Scholar
Saxton, M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401 (1994).
Article CAS PubMed PubMed Central Google Scholar
Saxton, M. J. Diffusion of DNA-binding species in the nucleus: a transient anomalous subdiffusion model. Biophys. J. 118, 2151–2167 (2020).
留言 (0)