Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters

Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

Article  CAS  PubMed  Google Scholar 

Corradi, V. et al. Emerging diversity in lipid–protein interactions. Chem. Rev. 119, 5775–5848 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leney, A. C. & Heck, A. J. R. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).

Article  CAS  PubMed  Google Scholar 

Bolla, J. R., Agasid, M. T., Mehmood, S. & Robinson, C. V. Membrane protein–lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88, 85–111 (2019).

Article  CAS  PubMed  Google Scholar 

Gupta, K. et al. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13, 1106–1120 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yen, H.-Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chorev, D. S. et al. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362, 829–834 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolla, J. R. et al. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10, 363–371 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miliara, X. et al. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nat. Commun. 10, 1130 (2019).

Article  PubMed  PubMed Central  Google Scholar 

McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell 80, 72–86.e7 (2020).

Article  CAS  PubMed  Google Scholar 

Jin, R. et al. Ion currents through Kir potassium channels are gated by anionic lipids. Nat. Commun. 13, 490 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidpeter, P. A. M. et al. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat. Struct. Mol. Biol. 121, 438a–439a (2022).

Google Scholar 

Yao, X. et al. Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments. Nat. Commun. 13, 7358 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Patil, D. N. et al. Cryo-EM structure of human GPR158 receptor coupled to the RGS7–Gβ5 signaling complex. Science 375, 86–91 (2022).

Article  CAS  PubMed  Google Scholar 

Sobti, M. et al. Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nat. Commun. 11, 2615 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasanthakumar, T. et al. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 116, 7272–7277 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L., Wu, D., Robinson, C. V., Wu, H. & Fu, T. Structures of a complete human V-ATPase reveal mechanisms of its assembly. Mol. Cell 80, 501–511.e3 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, D. et al. The complete assembly of human LAT1–4F2hc complex provides insights into its regulation, function and localisation. Nat. Commun. 15, 3711 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e5 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, S. et al. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 604, 384–390 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laganowsky, A., Reading, E., Hopper, J. T. S. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bechara, C. et al. A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat. Chem. 7, 255–262 (2015).

Article  CAS  PubMed  Google Scholar 

Kostelic, M. M., Ryan, A. M., Reid, D. J., Noun, J. M. & Marty, M. T. Expanding the types of lipids amenable to native mass spectrometry of lipoprotein complexes. J. Am. Soc. Mass Spectrom. 30, 1416–1425 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunham, W. H., Mullin, M. & Gingras, A.-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12, 1576–1590 (2012).

Article  CAS  PubMed  Google Scholar 

Biou, V. Lipid-membrane protein interaction visualised by cryo-EM: a review. Biochim. Biophys. Acta Biomembr. 1865, 184068 (2023).

Article  CAS  PubMed  Google Scholar 

Bagheri, Y., Ali, A. A. & You, M. Current methods for detecting cell membrane transient interactions. Front. Chem. 8, 1–14 (2020).

Article  Google Scholar 

Wang, L., Wu, D., Robinson, C. V. & Fu, T.-M. Identification of mEAK-7 as a human V-ATPase regulator via cryo-EM data mining. Proc. Natl Acad. Sci. USA 119, 1–3 (2022).

CAS  Google Scholar 

Shin, J. et al. Constitutive activation mechanism of a class C GPCR. Nat. Struct. Mol. Biol. 31, 678–687 (2024).

留言 (0)

沒有登入
gif