Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).
Article CAS PubMed Google Scholar
Corradi, V. et al. Emerging diversity in lipid–protein interactions. Chem. Rev. 119, 5775–5848 (2019).
Article CAS PubMed PubMed Central Google Scholar
Leney, A. C. & Heck, A. J. R. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).
Article CAS PubMed Google Scholar
Bolla, J. R., Agasid, M. T., Mehmood, S. & Robinson, C. V. Membrane protein–lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88, 85–111 (2019).
Article CAS PubMed Google Scholar
Gupta, K. et al. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13, 1106–1120 (2018).
Article CAS PubMed PubMed Central Google Scholar
Yen, H.-Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chorev, D. S. et al. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362, 829–834 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bolla, J. R. et al. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10, 363–371 (2018).
Article CAS PubMed PubMed Central Google Scholar
Miliara, X. et al. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nat. Commun. 10, 1130 (2019).
Article PubMed PubMed Central Google Scholar
McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell 80, 72–86.e7 (2020).
Article CAS PubMed Google Scholar
Jin, R. et al. Ion currents through Kir potassium channels are gated by anionic lipids. Nat. Commun. 13, 490 (2022).
Article CAS PubMed PubMed Central Google Scholar
Schmidpeter, P. A. M. et al. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat. Struct. Mol. Biol. 121, 438a–439a (2022).
Yao, X. et al. Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments. Nat. Commun. 13, 7358 (2022).
Article PubMed PubMed Central Google Scholar
Patil, D. N. et al. Cryo-EM structure of human GPR158 receptor coupled to the RGS7–Gβ5 signaling complex. Science 375, 86–91 (2022).
Article CAS PubMed Google Scholar
Sobti, M. et al. Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nat. Commun. 11, 2615 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vasanthakumar, T. et al. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 116, 7272–7277 (2019).
Article CAS PubMed PubMed Central Google Scholar
Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, L., Wu, D., Robinson, C. V., Wu, H. & Fu, T. Structures of a complete human V-ATPase reveal mechanisms of its assembly. Mol. Cell 80, 501–511.e3 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wu, D. et al. The complete assembly of human LAT1–4F2hc complex provides insights into its regulation, function and localisation. Nat. Commun. 15, 3711 (2024).
Article CAS PubMed PubMed Central Google Scholar
Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e5 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chen, S. et al. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 604, 384–390 (2022).
Article CAS PubMed PubMed Central Google Scholar
Laganowsky, A., Reading, E., Hopper, J. T. S. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).
Article PubMed PubMed Central Google Scholar
Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bechara, C. et al. A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat. Chem. 7, 255–262 (2015).
Article CAS PubMed Google Scholar
Kostelic, M. M., Ryan, A. M., Reid, D. J., Noun, J. M. & Marty, M. T. Expanding the types of lipids amenable to native mass spectrometry of lipoprotein complexes. J. Am. Soc. Mass Spectrom. 30, 1416–1425 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dunham, W. H., Mullin, M. & Gingras, A.-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12, 1576–1590 (2012).
Article CAS PubMed Google Scholar
Biou, V. Lipid-membrane protein interaction visualised by cryo-EM: a review. Biochim. Biophys. Acta Biomembr. 1865, 184068 (2023).
Article CAS PubMed Google Scholar
Bagheri, Y., Ali, A. A. & You, M. Current methods for detecting cell membrane transient interactions. Front. Chem. 8, 1–14 (2020).
Wang, L., Wu, D., Robinson, C. V. & Fu, T.-M. Identification of mEAK-7 as a human V-ATPase regulator via cryo-EM data mining. Proc. Natl Acad. Sci. USA 119, 1–3 (2022).
Shin, J. et al. Constitutive activation mechanism of a class C GPCR. Nat. Struct. Mol. Biol. 31, 678–687 (2024).
留言 (0)