Exosomal GDNF from Bone Marrow Mesenchymal Stem Cells Moderates Neuropathic Pain in a Rat Model of Chronic Constriction Injury

Boucher, T. J., Okuse, K., Bennett, D. L., Munson, J. B., Wood, J. N., & McMahon, S. B. (2000). Potent analgesic effects of GDNF in neuropathic pain states. Science, 290(5489), 124–127. https://doi.org/10.1126/science.290.5489.124

CAS  PubMed  Google Scholar 

Chen, G., Park, C. K., Xie, R. G., & Ji, R. R. (2015). Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-beta secretion. Journal of Clinical Investigation, 125(8), 3226–3240. https://doi.org/10.1172/JCI80883

PubMed  PubMed Central  Google Scholar 

Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B. A., Casula, M. A., Yiangou, Y., Birch, R., Anand, P., & Buell, G. N. (2005). Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 114(3), 386–396. https://doi.org/10.1016/j.pain.2005.01.002

CAS  PubMed  Google Scholar 

Daniele, S. G., Beraud, D., Davenport, C., Cheng, K., Yin, H., & Maguire-Zeiss, K. A. (2015). Activation of MyD88-dependent TLR1/2 signaling by misfolded alpha-synuclein, a protein linked to neurodegenerative disorders. Science Signalling, 8(376), ra45. https://doi.org/10.1126/scisignal.2005965

Google Scholar 

Duarte Azevedo, M., Sander, S., & Tenenbaum, L. (2020). GDNF, a neuron-derived factor upregulated in glial cells during disease. Journal of Clinical Medicine. https://doi.org/10.3390/jcm9020456

PubMed  PubMed Central  Google Scholar 

Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: From mechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019

CAS  PubMed  Google Scholar 

Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells. https://doi.org/10.3390/cells8080784

PubMed  PubMed Central  Google Scholar 

Grondin, R., & Gash, D. M. (1998). Glial cell line-derived neurotrophic factor (GDNF): A drug candidate for the treatment of Parkinson’s disease. Journal of Neurology, 245(11 Suppl 3), P35-42. https://doi.org/10.1007/pl00007744

CAS  PubMed  Google Scholar 

Horak, J., Nalos, L., Martinkova, V., Tegl, V., Vistejnova, L., Kuncova, J., Kohoutova, M., Jarkovska, D., Dolejsova, M., Benes, J., Steng, M., & Matejovic, M. (2020). Evaluation of mesenchymal stem cell therapy for sepsis: A randomized controlled porcine study. Frontiers in Immunology, 11, 126. https://doi.org/10.3389/fimmu.2020.00126

CAS  PubMed  PubMed Central  Google Scholar 

Hwang, K., Jung, K., Kim, I. S., Kim, M., Han, J., Lim, J., Shin, J. E., Jang, J.-H., & Park, K. I. (2019). Glial cell line-derived neurotrophic factor-overexpressing human neural stem/progenitor cells enhance therapeutic efficiency in rat with traumatic spinal cord injury. Experimental Neurobiology, 28(6), 679–696. https://doi.org/10.5607/en.2019.28.6.679

PubMed  PubMed Central  Google Scholar 

Ibanez, C. F., & Andressoo, J. O. (2017). Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiology of Disease, 97(Pt B), 80–89. https://doi.org/10.1016/j.nbd.2016.01.021

CAS  PubMed  Google Scholar 

Jha, M. K., Jeon, S., & Suk, K. (2012). Glia as a link between neuroinflammation and neuropathic pain. Immune Network, 12(2), 41–47. https://doi.org/10.4110/in.2012.12.2.41

PubMed  PubMed Central  Google Scholar 

Ji, R. R., Nackley, A., Huh, Y., Terrando, N., & Maixner, W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 129(2), 343–366. https://doi.org/10.1097/ALN.0000000000002130

PubMed  Google Scholar 

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/ni.1863

CAS  PubMed  Google Scholar 

Kim, C. F., & Moalem-Taylor, G. (2011). Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. Journal of Pain, 12(3), 370–383. https://doi.org/10.1016/j.jpain.2010.08.003

CAS  PubMed  Google Scholar 

Kimura, M., Sakai, A., Sakamoto, A., & Suzuki, H. (2015). Glial cell line-derived neurotrophic factor-mediated enhancement of noradrenergic descending inhibition in the locus coeruleus exerts prolonged analgesia in neuropathic pain. British Journal of Pharmacology, 172(10), 2469–2478. https://doi.org/10.1111/bph.13073

CAS  PubMed  PubMed Central  Google Scholar 

Ledeboer, A., Jekich, B. M., Sloane, E. M., Mahoney, J. H., Langer, S. J., Milligan, E. D., Martin, D., Maier, S. F., Johnson, K. W., Leinwand, L. A., Chavez, R. A., & Watkins, L. R. (2007). Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain, Behavior, and Immunity, 21(5), 686–698. https://doi.org/10.1016/j.bbi.2006.10.012

CAS  PubMed  Google Scholar 

Lee, J., Hyeon, S. J., Im, H., Ryu, H., Kim, Y., & Ryu, H. (2016). Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Experimental Neurobiology, 25(5), 233–240. https://doi.org/10.5607/en.2016.25.5.233

PubMed  PubMed Central  Google Scholar 

Li, D., Pan, X., Zhao, J., Chi, C., Wu, G., Wang, Y., Laio, Y., Wang, C., Ma, J., & Pan, J. (2016). Bone marrow mesenchymal stem cells suppress acute lung injury induced by lipopolysaccharide through inhibiting the TLR2, 4/NF-kappaB pathway in rats with multiple trauma. Shock, 45(6), 641–646. https://doi.org/10.1097/SHK.0000000000000548

CAS  PubMed  Google Scholar 

Liu, F., Wang, Z., Qiu, Y., Wei, M., Li, C., Xie, Y., Shen, L., Huang, Y., & Ma, C. (2017). Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. Journal of Neuroinflammation, 14(1), 70. https://doi.org/10.1186/s12974-017-0822-9

CAS  PubMed  PubMed Central  Google Scholar 

Liu, W., Rong, Y., Wang, J., Zhou, Z., Ge, X., Ji, C., Jiang, D., Gong, F., Li, L., Chen, J., Zhao, S., Kong, F., Gu, C., Fan, J., & Cai, W. (2020). Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. Journal of Neuroinflammation, 17(1), 47. https://doi.org/10.1186/s12974-020-1726-7

CAS  PubMed  PubMed Central  Google Scholar 

Liu, X., Wei, Q., Lu, L., Cui, S., Ma, K., Zhang, W., Ma, F., Li, H., Fu, X., & Zhang, C. (2023). Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Frontiers in Immunology, 14, 1094685. https://doi.org/10.3389/fimmu.2023.1094685

CAS  PubMed  PubMed Central  Google Scholar 

Ma, Z. J., Yang, J. J., Lu, Y. B., Liu, Z. Y., & Wang, X. X. (2020). Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World Journal of Stem Cells, 12(8), 814–840. https://doi.org/10.4252/wjsc.v12.i8.814

PubMed  PubMed Central  Google Scholar 

Mansour, R. M., Ahmed, M. A. E., El-Sahar, A. E., & El Sayed, N. S. (2018). Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicology and Applied Pharmacology, 358, 76–85. https://doi.org/10.1016/j.taap.2018.09.012

CAS  PubMed  Google Scholar 

Mika, J., Zychowska, M., Popiolek-Barczyk, K., Rojewska, E., & Przewlocka, B. (2013). Importance of glial activation in neuropathic pain. European Journal of Pharmacology, 716(1–3), 106–119. https://doi.org/10.1016/j.ejphar.2013.01.072

CAS  PubMed  Google Scholar 

Mitsikostas, D. D., Moka, E., Orrillo, E., Aurilio, C., Vadalouca, A., Paladini, A., & Varrassi, G. (2022). Neuropathic pain in neurologic disorders: A narrative review. Cureus, 14(2), e22419. https://doi.org/10.7759/cureus.22419

PubMed  PubMed Central  Google Scholar 

Muzio, L., Viotti, A., & Martino, G. (2021). Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Frontiers in Neuroscience, 15, 742065. https://doi.org/10.3389/fnins.2021.742065

PubMed  PubMed Central  Google Scholar 

Nie, L., Cai, S. Y., Shao, J. Z., & Chen, J. (2018). Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Frontiers in Immunology, 9, 1523. https://doi.org/10.3389/fimmu.2018.01523

CAS  PubMed  PubMed Central  Google Scholar 

Papadopoulos, G., Weinberg, E. O., Massari, P., Gibson, F. C., III., Wetzler, L. M., Morgan, E. F., & Genco, C. A. (2013). Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. Journal of Immunology, 190(3), 1148–1157. https://doi.org/10.4049/jimmunol.1202511

CAS  Google Scholar 

Pasare, C., & Medzhitov, R. (2005). Toll-like receptors: Linking innate and adaptive immunity. Advances in Experimental Medicine and Biology, 560, 11–18. https://doi.org/10.1007/0-387-24180-9_2

CAS  PubMed  Google Scholar 

Qian, D., Wei, G., Xu, C., He, Z., Hua, J., Li, J., Hu, Q., Lin, S., Gong, J., Meng, H., Zhou, B., Teng, H., & Song, Z. (2017). Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-kappaB1/p50 gene in rats. Scientific Reports, 7(1), 581.

留言 (0)

沒有登入
gif