Evaluation of Neuroprotective Effect of Gut Microbe in Parkinson's Disease: An In Silico and In Vivo Approach

Aebi, H. (1974). Catalase. Methods in Enzymatic Analysis, 2, 671–678.

Google Scholar 

Alharthy, K. M., Althurwi, H. N., Albaqami, F. F., Altharawi, A., Alzarea, S. I., Al-Abbasi, F. A., Nadeem, M. S., & Kazmi, I. (2023). Barbigerone potentially alleviates rotenone-activated Parkinson’s disease in a rodent model by reducing oxidative stress and neuroinflammatory cytokines. ACS Omega, 8(5), 4608–4615.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhardwaj, K., Rajawat, N. K., & Mathur, N. (2024). Development of Alpha-Synuclein protein model against therapeutic aspects of Parkinson’s disease. Indian Journal of Pharmacology, 56(1), 37–41. https://doi.org/10.4103/ijp.ijp_325_23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breen, D. P., Halliday, G. M., & Lang, A. E. (2019). Gut–brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Movement Disorders, 34(3), 307–316.

Article  PubMed  Google Scholar 

Butkovich, L. M., Houser, M. C., & Tansey, M. G. (2018). α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Frontiers in Neuroscience, 12, 626. https://doi.org/10.3389/fnins.2018.00626

Article  PubMed  PubMed Central  Google Scholar 

Charles, M., & McEwen, J. (1977). Methods in enzymology (Vol. XVIIB, pp. 692–698). Academic.

Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism and Related Disorders, 17(10), 717–723.

Article  PubMed  Google Scholar 

Chonpathompikunlert, P., Boonruamkaew, P., Sukketsiri, W., Hutamekalin, P., & Sroyraya, M. (2018). The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complementary and Alternative Medicine, 18, 1–12.

Article  Google Scholar 

Clairembault, T., Leclair-Visonneau, L., Coron, E., Bourreille, A., Le Dily, S., Vavasseur, F., Heymann, M. F., Neunlist, M., & Derkinderen, P. (2015). Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathologica Communications, 3, 1–9.

Article  Google Scholar 

El-Ghaiesh, S. H., Bahr, H. I., Ibrahiem, A. T., Ghorab, D., Alomar, S. Y., Farag, N. E., & Zaitone, S. A. (2020). Metformin protects from rotenone-induced nigrostriatal neuronal death in adult mice by activating AMPK-FOXO3 signaling and mitigation of angiogenesis. Frontiers in Molecular Neuroscience, 13, 84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fikry, H., Saleh, L. A., & Abdel Gawad, S. (2022). Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s disease Model. CNS Neuroscience and Therapeutics, 28(5), 732–748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glajch, K. E., Fleming, S. M., Surmeier, D. J., & Osten, P. (2012). Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behavioural Brain Research, 230(2), 309–316.

Article  CAS  PubMed  Google Scholar 

Jha, S. K., & Kumar, P. (2017). An in silico study of naringenin-mediated neuroprotection in Parkinson’s disease. Asian Journal of Pharmaceutical and Clinical Research, 10(8), 171–176.

Article  Google Scholar 

Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. (2016a). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 9730467. https://doi.org/10.1155/2016/9730467

Article  CAS  PubMed  Google Scholar 

Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. (2016b). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 9730467.

Article  PubMed  Google Scholar 

Klingelhoefer, L., & Reichmann, H. (2015). Pathogenesis of Parkinson disease—The gut–brain axis and environmental factors. Nature Reviews Neurology, 11(11), 625–636.

Article  CAS  PubMed  Google Scholar 

Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

Article  CAS  PubMed  Google Scholar 

Lozanska, B., Georgieva, M., Miloshev, G., & Xenodochidis, C. (2022). Ageing and neurodegeneration—The role of neurotransmitters’ activity. International Journal of Bioautomation, 26(4), 325.

Article  CAS  Google Scholar 

Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (pp. 12–258). McGraw-Hill.

Madiha, S., Batool, Z., Tabassum, S., Liaquat, L., Sadir, S., Shahzad, S., Naqvi, F., Saleem, S., Yousuf, S., Nawaz, A., & Haider, S. (2021). Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS ONE, 16(11), e0258928.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantovani, E., Zucchella, C., Argyriou, A. A., & Tamburin, S. (2023). Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: Current evidence and future perspectives. Expert Review of Neurotherapeutics, 23(1), 25–43.

Article  CAS  PubMed  Google Scholar 

Mao, Y. R., Jiang, L., Duan, Y. L., An, L. J., & Jiang, B. (2007). Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain. Environmental Toxicology and Pharmacology, 23(3), 314–318.

Article  CAS  PubMed  Google Scholar 

Monteiro, A. F. M., Viana, J. D. O., Nayarisseri, A., Zondegoumba, E. N., Mendonça Junior, F. J. B., Scotti, M. T., & Scotti, L. (2018). Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/7912765

Article  PubMed  PubMed Central  Google Scholar 

Mubashir, N., Fatima, R., & Naeem, S. (2020). Identification of novel phyto-chemicals from Ocimum basilicum for the treatment of Parkinson’s disease using in silico approach. Current Computer-Aided Drug Design, 16(4), 420–434.

Article  CAS  PubMed  Google Scholar 

Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090.

Article  PubMed  PubMed Central  Google Scholar 

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

Article  CAS  PubMed  Google Scholar 

Ouzounoglou, E., Kalamatianos, D., Emmanouilidou, E., Xilouri, M., Stefanis, L., Vekrellis, K., & Manolakos, E. S. (2014). In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis. BMC Systems Biology, 8(1), 1–18.

Article  Google Scholar 

Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.

CAS  PubMed  Google Scholar 

Panday, S., Talreja, R., & Kavdia, M. (2020). The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvascular Research, 131, 104010.

Article  CAS  PubMed  Google Scholar 

Pathania, A., Kumar, R., & Sandhir, R. (2021). Hydroxytyrosol as anti-Parkinsonian molecule: Assessment using in silico and MPTP-induced Parkinson’s disease model. Biomedicine and Pharmacotherapy, 139, 111525.

Article  CAS  PubMed  Google Scholar 

Rahman, H., & Eswaraiah, M. (2008). Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice: A review. Pharmatutor Art, 1244, 1–12.

Google Scholar 

Rajawat, N. K. (2022). Neurotoxicity of N-Nitrosodimethylamine (NDMA) in Swiss albino mice and neuroprotection by nanocurcumin. Materials Today: Proceedings, 69, A30–A41.

CAS  Google Scholar 

Ramsay, R. R., & Tipton, K. F. (2017). Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 22(7), 1192.

Article  PubMed  PubMed Central  Google Scholar 

Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate production by probiotic bacteria. Nutrients, 3(1), 118–134.

留言 (0)

沒有登入
gif