Physical Exercise Inhibits Cognitive Impairment and Memory Loss in Aged Mice, and Enhances Pre- and Post-Synaptic Proteins in the Hippocampus of Young and Aged Mice

Ahmed, S., Kwatra, M., Gawali, B., Panda, S. R., & Naidu, V. G. M. (2021). Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis, 26(1–2), 52–70. https://doi.org/10.1007/s10495-020-01645-x

Article  CAS  PubMed  Google Scholar 

Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69–77. https://doi.org/10.1016/j.biopsycho.2016.01.010

Article  PubMed  Google Scholar 

Alkadhi, K. A., & Dao, A. T. (2018). Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer’s disease. Molecular and Cellular Neuroscience, 86, 25–29. https://doi.org/10.1016/j.mcn.2017.11.008

Article  CAS  PubMed  Google Scholar 

Bečanović, K., Muhammad, A., Gadawska, I., Sachdeva, S., Walker, D., Lazarowski, E. R., et al. (2021). Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. Aging and Mechanisms of Disease, 7(1), 1–14. https://doi.org/10.1038/s41514-021-00079-2

Article  CAS  Google Scholar 

Camandola, S., & Mattson, M. (2017). Brain metabolism in health, aging, and neurodegeneration. The EMBO Journal. https://doi.org/10.15252/embj.201695810

Article  PubMed  PubMed Central  Google Scholar 

Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G. M., Tufik, S., Meeusen, R., & De Mello, M. T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029

Article  CAS  PubMed  Google Scholar 

Charan, J., & Kantharia, N. D. (2013). How to calculate sample size in animal studies? Journal of Pharmacology and Pharmacotherapeutics, 4(4), 303–306. https://doi.org/10.4103/0976-500X.119726

Article  PubMed  PubMed Central  Google Scholar 

Chirico, E. N., Di Cataldo, V., Chauveau, F., Geloën, A., Patsouris, D., Thézé, B., et al. (2016). Magnetic resonance imaging biomarkers of exercise-induced improvement of oxidative stress and inflammation in the brain of old high-fat-fed ApoE −/− mice. The Journal of Physiology, 594(23), 6969–6985. https://doi.org/10.1113/JP271903

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cifuentes, D. J., Rocha, L. G., Silva, L. A., Brito, A. C., Rueff-barroso, C. R., Porto, L. C., & Pinho, R. A. (2010). Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate. Osteoarthritis and Cartilage, 18(8), 1088–1095. https://doi.org/10.1016/j.joca.2010.04.004

Article  CAS  PubMed  Google Scholar 

de Araujo, C. C., Silva, J. D., Samary, C. S., Guimaraes, I. H., Marques, P. S., Oliveira, G. P., et al. (2012). Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. Journal of Applied Physiology, 112(7), 1206–1214. https://doi.org/10.1152/japplphysiol.01061.2011

Article  CAS  PubMed  Google Scholar 

De la Rosa, A., Solana, E., Corpas, R., Bartrés-Faz, D., Pallàs, M., Vina, J., et al. (2019). Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-40040-8

Article  CAS  Google Scholar 

de Lima, N. S., De Sousa, R. A. L., Amorim, F. T., Gripp, F., Dinizemagalhães, C. O., Henrique Pinto, S., et al. (2021). Moderate-intensity continuous training and high-intensity interval training improve cognition, and BDNF levels of middle-aged overweight men. Metabolic Brain Disease. https://doi.org/10.1007/s11011-021-00859-5

Article  PubMed  Google Scholar 

de Oliveira, L. R. S., Machado, F. S. M., Rocha-Dias, I., Magalhães, C. O. D. E., De Sousa, R. A. L., & Cassilhas, R. C. (2022). An overview of the molecular and physiological antidepressant mechanisms of physical exercise in animal models of depression. Molecular Biology Reports. https://doi.org/10.1007/s11033-022-07156-z

Article  PubMed  Google Scholar 

De Sousa, R. A. L. (2018). Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals Diabetes mellitus. International Journal of Diabetes in Developing Countries, 38(2), 138–145. https://doi.org/10.1007/s13410-017-0582-1

Article  Google Scholar 

De Sousa, R. A. L., Caria, A. C. I., De Jesus Silva, F. M., Dinizemagalhães, C. O., Freitas, D. A., Lacerda, A. C. R., et al. (2020a). High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiology & Behavior, 223(6), 1–7. https://doi.org/10.1016/j.physbeh.2020.112998

Article  CAS  Google Scholar 

De Sousa, R. A. L., Harmer, A. R., Freitas, D. A., Mendonça, V. A., Lacerda, A. C. R., & Leite, H. R. (2020b). An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease. Molecular Biology Reports, 47, 6347–6356. https://doi.org/10.1007/s11033-020-05693-z

Article  CAS  PubMed  Google Scholar 

De Sousa, R. A., Peixoto, M. F., Leite, H. R., Oliveira, L. R., Freitas, D. A., Silva-Júnior, F. A., Oliveira, H. S., Rocha-Vieira, E., Cassilhas, R. C., & Oliveira, D. B. (2020c). Neurological consequences of exercise during prenatal Zika virus exposure to mice pups. International Journal of Neuroscience, 21, 1–11. https://doi.org/10.1080/00207454.2020.1860970

Article  CAS  Google Scholar 

De Sousa, R. A. L., Rocha-Dias, I., de Oliveira, L. R. S., Improta-Caria, A. C., Monteiro-Junior, R. S., & Cassilhas, R. C. (2021a). Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Molecular Biology Reports. https://doi.org/10.1007/s11033-021-06330-z

Article  PubMed  Google Scholar 

Dell, R. B., Holleran, S., & Ramakrishnan, R. (2002). Sample Size Determination. ILAR Journal, 43(4), 207–213. https://doi.org/10.1093/ilar.43.4.207

Article  CAS  PubMed  Google Scholar 

Denninger, J. K., Smith, B. M., & Kirby, E. D. (2018). Novel object recognition and object location behavioral testing in mice on a budget. Journal of Visualized Experiments, 2018(141), 1–10. https://doi.org/10.3791/58593

Article  Google Scholar 

Festing, M. F. (2018). On determining sample size in experiments involving laboratory animals. Laboratory Animals, 52(4), 341–350. https://doi.org/10.1177/0023677217738268

Article  CAS  PubMed  Google Scholar 

Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G., & Barbieri, F. A. (2019). Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with Parkinson’s Disease. Journal of Physical Activity and Health. https://doi.org/10.1123/jpah.2018-0189

Article  PubMed  Google Scholar 

Freitas, D. A., Rocha-Vieira, E., De Sousa, R. A. L., Soares, B. A., Rocha-Gomes, A., Chaves Garcia, B. C., et al. (2019). High-intensity interval training improves cerebellar antioxidant capacity without affecting cognitive functions in rats. Behavioural Brain Research, 376, 112181. https://doi.org/10.1016/j.bbr.2019.112181

Article  CAS  PubMed  Google Scholar 

Garcia, Y. J., Rodríguez-Malaver, A. J., & Peñaloza, N. (2005). Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. Journal of Neuroscience Methods, 144(1), 127–135. https://doi.org/10.1016/j.jneumeth.2004.10.018

Article  CAS  PubMed  Google Scholar 

George, E. K., & Hemachandra Reddy, P. (2019). Can healthy diets, regular exercise, and better lifestyle delay the progression of dementia in elderly individuals? Journal of Alzheimer’s Disease, 72(s1), S37–S58. https://doi.org/10.3233/JAD-190232

Article  PubMed  Google Scholar 

Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., et al. (2003). Alzheimer’s disease-affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10417–10422. https://doi.org/10.1073/pnas.1834302100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham, L. C., Grabowska, W. A., Chun, Y., Risacher, S. L., Philip, V. M., Saykin, A. J., et al. (2019). Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiology of Aging, 80, 154–172. https://doi.org/10.1016/j.neurobiolaging.2019.03.018

Article  PubMed  PubMed Central  Google Scholar 

Guo, L., Li, S., Zhang, Y., Yang, X., Zhang, Y., Cui, H., & Li, Y. (2023). Effects of exercise intensity on spatial memory performance and hippocampal synaptic function in SAMP8 mice. Neurobiology of Learning and Memory, 203, 107791. https://doi.

留言 (0)

沒有登入
gif