Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes

Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

Article  CAS  PubMed  Google Scholar 

Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

Article  CAS  PubMed  Google Scholar 

Xie, B. et al. Hollow and porous Fe3C-NC nanoballoons nanozymes for cancer cell H2O2 detection. Sens. Actuators B Chem. 347, 130597 (2021).

Article  CAS  Google Scholar 

Yuan, B., Chou, H. L. & Peng, Y. K. Disclosing the origin of transition metal oxides as peroxidase (and catalase) mimetics. ACS Appl. Mater. Interfaces 14, 22728–22736 (2022).

Article  CAS  Google Scholar 

Meng, X. et al. Bimetallic nanozyme: a credible tag for in situ-catalyzed reporter deposition in the lateral flow immunoassay for ultrasensitive cancer diagnosis. Nano Lett. 24, 51–60 (2024).

Article  CAS  PubMed  Google Scholar 

Wang, X., Chen, M. & Zhao, L. Development of a colorimetric sensing assay for ascorbic acid and sarcosine utilizing the dual-class enzyme activity of Fe3O4@SiO2@NiCo2S4. Chem. Eng. J. 468, 143612 (2023).

Article  CAS  Google Scholar 

Zhou, X. et al. Nanozyme inhibited sensor array for biothiol detection and disease discrimination based on metal ion-doped carbon dots. Anal. Chem. 95, 8906–8913 (2023).

Article  CAS  PubMed  Google Scholar 

Jiang, Y. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, C. et al. Starvation, ferroptosis, and prodrug therapy synergistically enabled by a cytochrome c oxidase like nanozyme. Adv. Mater. 34, 2203236 (2022).

Article  CAS  Google Scholar 

Cao, F. et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 16, 855–868 (2022).

Article  CAS  PubMed  Google Scholar 

Ding, L. et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ros scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 16, 15959–15976 (2022).

Article  PubMed  Google Scholar 

Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

Article  CAS  PubMed  Google Scholar 

Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, H., Wan, K. & Shi, X. Recent advances in nanozyme research. Adv. Mater. 31, e1805368 (2019).

Article  PubMed  Google Scholar 

Liang, M. & Yan, X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

Article  CAS  PubMed  Google Scholar 

Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

Article  CAS  PubMed  Google Scholar 

Yan, X. (ed) Nanozymology: Connecting Biology and Nanotechnology Vol 1 (Springer Nature, 2020).

Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).

Article  CAS  PubMed  Google Scholar 

Cha, S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J. Biol. Chem. 243, 820–825 (1968).

Article  CAS  PubMed  Google Scholar 

Fraser, S. J. The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988).

Article  CAS  Google Scholar 

Rodriguez-Lopez, J. N., Gilabert, M. A., Tudela, J., Thorneley, R. N. F. & Garcia-Canovas, F. Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry 39, 13201–13209 (2000).

Article  CAS  PubMed  Google Scholar 

Gao, X. J., Zhao, Y. & Gao, X. Catalytic signal transduction theory enabled virtual screening of nanomaterials for medical functions. Acc. Chem. Res. 56, 2366–2377 (2023).

Article  CAS  PubMed  Google Scholar 

Gao, X. J., Yan, J., Zheng, J. J., Zhong, S. & Gao, X. Clear-box machine learning for virtual screening of 2D nanozymes to target tumor hydrogen peroxide. Adv. Healthc. Mater. 12, e2202925 (2023).

Article  PubMed  Google Scholar 

Hulva, J. et al. Adsorption of Co on the Fe3O4 (001) surface. J. Phys. Chem. B 122, 721–729 (2018).

Article  CAS  PubMed  Google Scholar 

Luo, F. et al. Accurate evaluation of active-site density (SD) and turnover frequency (TOF) of PGM-free metal–nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption. ACS Catal. 9, 4841–4852 (2019).

Article  CAS  Google Scholar 

Herold, F., Gläsel, J., Etzold, B. J. M. & Rønning, M. Can temperature-programmed techniques provide the gold standard for carbon surface characterization? Chem. Mater. 34, 8490–8516 (2022).

Article  CAS  Google Scholar 

Chen, Y. et al. Thermal atomization of platinum nanoparticles into single atoms: an effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143, 18643–18651 (2021).

Article  CAS  PubMed  Google Scholar 

Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

Article  CAS  Google Scholar 

Zandieh, M. & Liu, J. Nanozyme catalytic turnover and self-limited reactions. ACS Nano 15, 15645–15655 (2021).

Article  CAS  PubMed  Google Scholar 

Shen, X., Wang, Z., Gao, X. & Zhao, Y. Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 10, 12657–12665 (2020).

Article  CAS  Google Scholar 

Shen, X., Wang, Z., Gao, X. J. & Gao, X. Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. 36, e2211151 (2024).

Article  PubMed  Google Scholar 

Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Article  CAS  Google Scholar 

Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Article  CAS  Google Scholar 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

留言 (0)

沒有登入
gif