Apelin-13 administration allows for norepinephrine sparing in a rat model of cecal ligation and puncture-induced septic shock

Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219):200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

Article  PubMed  PubMed Central  Google Scholar 

Cohen J, Cristofaro P, Carlet J, Opal S (2004) New method of classifying infections in critically ill patients. Crit Care Med 32(7):1510–1526. https://doi.org/10.1097/01.CCM.0000129973.13104.2D

Article  PubMed  Google Scholar 

Dolmatova EV, Wang K, Mandavilli R, Griendling KK (2021) The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 117(1):60–73. https://doi.org/10.1093/cvr/cvaa070

Article  CAS  PubMed  Google Scholar 

Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363(7):689–691. https://doi.org/10.1056/NEJMcibr1007320

Article  CAS  PubMed  Google Scholar 

Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C (2015) Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. https://doi.org/10.1186/s13054-015-0741-z

Article  PubMed  PubMed Central  Google Scholar 

Lanspa MJ, Cirulis MM, Wiley BM et al (2021) Right ventricular dysfunction in early sepsis and septic shock. Chest 159(3):1055–1063. https://doi.org/10.1016/j.chest.2020.09.274

Article  PubMed  Google Scholar 

Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S (2014) Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care 29(4):500–511. https://doi.org/10.1016/j.jcrc.2014.03.028

Article  PubMed  Google Scholar 

Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ (2015) Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep 12(2):130–140. https://doi.org/10.1007/s11897-014-0247-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrara M, Ferrario M, Bollen Pinto B, Herpain A (2021) The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. https://doi.org/10.1186/s13613-021-00869-7

Article  PubMed  PubMed Central  Google Scholar 

Lat I, Coopersmith CM, De Backer D (2021) The surviving sepsis campaign: fluid resuscitation and vasopressor therapy research priorities in adult patients. Crit Care Med. https://doi.org/10.1097/CCM.0000000000004864

Article  PubMed  PubMed Central  Google Scholar 

Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D (2017) Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med 43(5):625–632. https://doi.org/10.1007/s00134-016-4675-y

Article  PubMed  Google Scholar 

ProCESS Investigators, Yealy DM, Kellum JA, et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370(18):1683–1693. https://doi.org/10.1056/NEJMoa1401602

Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372(14):1301–1311. https://doi.org/10.1056/nejmoa1500896

Article  CAS  PubMed  Google Scholar 

Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377. https://doi.org/10.1056/NEJMoa010307

Article  CAS  PubMed  Google Scholar 

Wilkman E, Kaukonen KM, Pettilä V, Kuitunen A, Varpula M (2013) Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiol Scand 57(4):431–442. https://doi.org/10.1111/aas.12056

Article  CAS  PubMed  Google Scholar 

Liaudet L, Calderari B, Pacher P (2014) Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev 19(6):815–824. https://doi.org/10.1007/s10741-014-9418-y

Article  CAS  PubMed  Google Scholar 

Neri M, Cerretani D, Fiaschi AI et al (2007) Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 11(1):156–170. https://doi.org/10.1111/j.1582-4934.2007.00009.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu G, Wang Z, Zhang R, Sun W, Chen X (2021) The role of apelin/apelin receptor in energy metabolism and water homeostasis: a comprehensive narrative review. Front Physiol. https://doi.org/10.3389/fphys.2021.632886

Article  PubMed  PubMed Central  Google Scholar 

Dray C, Knauf C, Daviaud D et al (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8(5):437–445. https://doi.org/10.1016/j.cmet.2008.10.003

Article  CAS  PubMed  Google Scholar 

Ashley EA, Powers J, Chen M et al (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65(1):73–82. https://doi.org/10.1016/j.cardiores.2004.08.018

Article  CAS  PubMed  Google Scholar 

Coquerel D, Sainsily X, Dumont L et al (2018) The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit Care. https://doi.org/10.1186/s13054-018-1942-z

Article  PubMed  PubMed Central  Google Scholar 

Coquerel D, Chagnon F, Sainsily X et al (2017) ELABELA improves cardio-renal outcome in fatal experimental septic shock. Crit Care Med 45(11):e1139–e1148. https://doi.org/10.1097/CCM.0000000000002639

Article  PubMed  Google Scholar 

Chagnon F, Coquerel D, Salvail D et al (2017) Apelin compared with dobutamine exerts cardioprotection and extends survival in a rat model of endotoxin-induced myocardial dysfunction. Crit Care Med 45(4):e391–e398. https://doi.org/10.1097/CCM.0000000000002097

Article  CAS  PubMed  Google Scholar 

Ashley EA, Powers J, Chen M et al (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. https://doi.org/10.1016/j.cardiores.2004.08.018

Article  PubMed  Google Scholar 

Rudiger A, Singer M (2016) Decatecholaminisation during sepsis. Crit Care. https://doi.org/10.1186/s13054-016-1488-x

Article  PubMed  PubMed Central  Google Scholar 

Buckley MS, Barletta JF, Smithburger PL, Radosevich JJ, Kane-Gill SL (2019) Catecholamine vasopressor support sparing strategies in vasodilatory shock. Pharmacotherapy 39(3):382–398. https://doi.org/10.1002/phar.2199

Article  CAS  PubMed  Google Scholar 

De Backer D, Cecconi M, Chew MS et al (2022) A plea for personalization of the hemodynamic management of septic shock. Crit Care. https://doi.org/10.1186/s13054-022-04255-y

Article  PubMed  PubMed Central  Google Scholar 

Guinot PG, Martin A, Berthoud V et al (2021) Vasopressor-sparing strategies in patients with shock: a scoping-review and an evidence-based strategy proposition. J Clin Med. https://doi.org/10.3390/jcm10143164

Article  PubMed  PubMed Central  Google Scholar 

Gazewood JD (2017) Heart failure with preserved ejection fraction: diagnosis and management. 96. www.aafp.org/afp

Andreis DT, Singer M (2016) Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 42(9):1387–1397. https://doi.org/10.1007/s00134-016-4249-z

留言 (0)

沒有登入
gif