Short Synthetic Peptides as Efflux Pump Inhibitors Resensitising Multidrug-Resistant Escherichia coli TG1 and Erwinia amylovora 1189 bacteria

Abdali N, Parks JM, Haynes KM et al (2017) Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect Dis 3:89–98. https://doi.org/10.1021/acsinfecdis.6b00167

Article  CAS  PubMed  Google Scholar 

Abu-Sini M, Mayyas A, Al-Karablieh N et al (2017) Synthesis of 1, 2, 3-triazolo [4, 5-h] quinolone derivatives with novel anti-microbial properties against Metronidazole resistant Helicobacter pylori. Molecules 22:841. https://doi.org/10.3390/molecules22050841

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Hadid KJ, Al-Karablieh N, Sharab A, Mutlak I (2019) Phytochemical analyses and antibacterial activities of Erodium, Euphorbia, Logoecia and Tamarix species. J Infect Dev Ctries 13:1013–1020. https://doi.org/10.3855/JIDC.11776

Article  CAS  PubMed  Google Scholar 

Al-Karablieh N, Weingart H, Ullrich MS (2009a) Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological niches. Int J Mol Sci 10:629–645. https://doi.org/10.3390/ijms10020629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Karablieh N, Weingart H, Ullrich MS (2009b) The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Microb Biotechnol 2:465–475. https://doi.org/10.1111/j.1751-7915.2009.00095.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bavro VN, Pietras Z, Furnham N et al (2008) Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 30:114–121. https://doi.org/10.1016/j.molcel.2008.02.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergmiller T, Andersson AMC, Tomasek K et al (2017) Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Sci (80-) 356:311–315. https://doi.org/10.1126/science.aaf4762

Article  CAS  Google Scholar 

Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:14. https://doi.org/10.3390/microorganisms4010014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burse A, Weingart H, Ullrich MS (2004) NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 70:693–703. https://doi.org/10.1128/AEM.70.2.693-703.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coldham NG, Webber M, Woodward MJ, Piddock LJV (2010) A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica Serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65:1655–1663. https://doi.org/10.1093/jac/dkq169

Article  CAS  PubMed  Google Scholar 

Du D, Wang Z, Chiu W, Luisi BF (2018) Purification of AcrAB-TolC Multidrug Efflux Pump for Cryo-EM analysis. Bact Multidrug Export Methods Protoc 71–81. https://doi.org/10.1007/978-1-4939-7454-2_5

Elkins CA, Nikaido H (2003) 3D structure of AcrB: the archetypal multidrug efflux transporter of Escherichia coli likely captures substrates from periplasm. Drug Resist Updat 6:9–13. https://doi.org/10.1016/s1368-7646(03)00004-9

Article  CAS  PubMed  Google Scholar 

Gupta D, Singh A, Khan AU (2017) Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 12:1–6. https://doi.org/10.1186/s11671-017-2222-6

Article  CAS  Google Scholar 

Jaradat DMM (2018) Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50:39–68. https://doi.org/10.1007/s00726-017-2516-0

Article  CAS  PubMed  Google Scholar 

Jaradat DMM (2022) Solid-phase peptide cyclization with two Disulfide bridges. Methods Mol Biol 2371:19–29. https://doi.org/10.1007/978-1-0716-1689-5_2

Article  CAS  PubMed  Google Scholar 

Jaradat DMM, Saleh KKY, Za’arir BHM et al (2019) Solid-phase synthesis and antibacterial activity of an Artificial cyclic peptide containing two Disulfide bridges. Int J Pept Res Ther 25:1095–1102. https://doi.org/10.1007/s10989-018-9757-y

Article  CAS  Google Scholar 

Jaradat DMM, Al-Karablieh N, Zaarer BHM et al (2021) Human glucose-dependent insulinotropic polypeptide (GIP) is an antimicrobial adjuvant re-sensitising multidrug-resistant Gram-negative bacteria. Biol Chem 402:513–524. https://doi.org/10.1515/hsz-2020-0351

Article  CAS  PubMed  Google Scholar 

Jeong H, Kim J-S, Song S et al (2016) Pseudoatomic structure of the tripartite multidrug efflux pump AcrAB-TolC reveals the intermeshing cogwheel-like interaction between AcrA and TolC. Structure 24:272–276. https://doi.org/10.1016/j.str.2015.12.007

Article  CAS  PubMed  Google Scholar 

Kim H-M, Xu Y, Lee M et al (2010) Functional relationships between the AcrA hairpin tip region and the TolC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-TolC. J Bacteriol 192:4498–4503. https://doi.org/10.1128/JB.00334-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J-S, Jeong H, Song S et al (2015) Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol Cells 38:180–186. https://doi.org/10.14348/molcells.2015.2277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnamoorthy G, Tikhonova EB, Dhamdhere G, Zgurskaya HI (2013) On the role of TolC in multidrug efflux: the function and assembly of AcrAB–TolC tolerate significant depletion of intracellular TolC protein. Mol Microbiol 87:982–997. https://doi.org/10.1111/mmi.12143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis K (2001) In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3:247–254

CAS  PubMed  Google Scholar 

Lomovskaya O, Warren MS, Lee A et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116. https://doi.org/10.1128/aac.45.1.105-116.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayyas A, Azzam H, Tayseer I et al (2021) Evaluation of the synergistic antimicrobial effect of folk medicinal plants with clindamycin against methicillin-resistant Staphylococcus aureus strains. Lett Appl Microbiol 73:735–740. https://doi.org/10.1111/lam.13565

Article  CAS  PubMed  Google Scholar 

Nikaido H (2011) Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol 77:1. https://doi.org/10.1002/9780470920541.ch1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta (BBA)-Proteins Proteom 1794:769–781. https://doi.org/10.1016/j.bbapap.2008.10.004

Article  CAS  Google Scholar 

Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:140720. https://doi.org/10.3389/fmicb.2015.00421

Article  Google Scholar 

Pagès J-M, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta (BBA)-Proteins Proteom 1794:826–833. https://doi.org/10.1016/j.bbapap.2008.12.011

Article  CAS 

留言 (0)

沒有登入
gif