Development of Novel Peptide Inhibitors Adapted to the Surface Property and Morphology of S Protein RBD

Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH, Soliman SS (2021) SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 49:855–876. https://doi.org/10.1007/s15010-021-01677-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai C, Zhong Q, Gao GF (2022) Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci 65:280–294. https://doi.org/10.1007/s11427-021-1964-4

Article  CAS  PubMed  Google Scholar 

Barnes CO, Jette CA, Abernathy ME, Dam KM, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588:682–687. https://doi.org/10.1038/s41586-020-2852-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batista AD, Rajpal S, Keitel B, Dietl S, Fresco-Cala B, Dinc M, Groß R, Sobek H, Münch J, Mizaikoff B (2022) Plastic antibodies mimicking the ACE2 receptor for selective binding of SARS-CoV-2 spike. Adv Mater Interfaces 9:2101925. https://doi.org/10.1002/admi.202101925

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyerstedt S, Casaro EB, Rangel ÉB (2021) COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 40:905–919. https://doi.org/10.1007/s10096-020-04138-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Sultana Shimu MS, Saleh MA, Mostafa-Hedeab G, Alqarni M, Obaidullah AJ, Batiha GE (2022) Molecular docking and dynamics studies to explore effective inhibitory peptides against the spike receptor binding domain of SARS-CoV-2. Front Mol Biosci 8:791642. https://doi.org/10.3389/fmolb.2021.791642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, Herbert AS, Procko E (2020) Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369:1261–1265. https://doi.org/10.1126/science.abc0870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corpetti C, Del Re A, Seguella L, Palenca I, Rurgo S, De Conno B, Pesce M, Sarnelli G, Esposito G (2021) Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line. Phytother Res 35:6893–6903. https://doi.org/10.1002/ptr.7302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, Liu P, Zhou Y, Shen Y, Liu S, Zhang Y (2021) Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 176:1–2. https://doi.org/10.1016/j.ijbiomac.2021.02.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eberle RJ, Sevenich M, Gering I, Scharbert L, Strodel B, Lakomek NA, Santur K, Mohrlüder J, Coronado MA, Willbold D (2023) Discovery of all-d-peptide inhibitors of SARS-CoV-2 3C-like protease. ACS Chem Biol 18:315–330. https://doi.org/10.1021/acschembio.2c00735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discovery Today 20:122–128. https://doi.org/10.1016/j.drudis.2014.10.003

Article  CAS  PubMed  Google Scholar 

Freitas FC, Ferreira PH, Favaro DC, Oliveira RJ (2021) Shedding light on the inhibitory mechanisms of SARS-CoV-1/CoV-2 spike proteins by ACE2-designed peptides. J Chem Inf Model 61:1226–1243. https://doi.org/10.1021/acs.jcim.0c01320

Article  CAS  PubMed  Google Scholar 

Gautam A, Kaphle K, Shrestha B, Phuyal S (2020) Susceptibility to SARS, MERS, and COVID-19 from animal health perspective. Open Vet J 10(2):164–177. https://doi.org/10.4314/ovj.v10i2.6

Article  PubMed  PubMed Central  Google Scholar 

Ge C, Feng J, Zhang J, Hu K, Wang D, Zha L, Hu X, Li R (2022) Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein. Talanta 236:122847. https://doi.org/10.1016/j.talanta.2021.122847

Article  CAS  PubMed  Google Scholar 

Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Y, Král P (2020) Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano 14:5143–5147. https://doi.org/10.1021/acsnano.0c02857

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han S, Zhao G, Wei Z, Chen Y, Zhao J, He Y, He YJ, Gao J, Chen S, Du C, Wang T (2021) An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade. Peptides 145:170638. https://doi.org/10.1016/j.peptides.2021.170638

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatmal MM, Alshaer W, Al-Hatamleh MA, Hatmal M, Smadi O, Taha MO, Oweida AJ, Boer JC, Mohamud R, Plebanski M (2020) Comprehensive structural and molecular comparison of spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and their interactions with ACE2. Cells 9(12):2638. https://doi.org/10.3390/cells9122638

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horndler L, Delgado P, Abia D, Balabanov I, Martínez-Fleta P, Cornish G, Llamas MA, Serrano-Villar S, Sánchez-Madrid F, Fresno M, Van Santen HM (2021) Flow cytometry multiplexed method for the detection of neutralizing human antibodies to the native SARS-CoV-2 spike protein. EMBO Mol Med 13:e13549. https://doi.org/10.15252/emmm.202013549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini M, Chen W, Xiao D, Wang C (2021) Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Prec Clin Med 4:1–16. https://doi.org/10.1093/pcmedi/pbab001

Article  Google Scholar 

Izac JR, Kwee EJ, Tian L, Elsheikh E, Gaigalas AK, Elliott JT, Wang L (2023) Development of a cell-based SARS-CoV-2 pseudovirus neutralization assay using imaging and flow cytometry analysis. Int J Mol Sci 24:12332. https://doi.org/10.3390/ijms241512332

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20. https://doi.org/10.1038/s41580-021-00418-x

Article  CAS  PubMed  Google Scholar 

Kirtipal N, Bharadwaj S, Kang SG (2020) From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol 85:104502. https://doi.org/10.1016/j.meegid.2020.104502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018(6):pdb-prot095505. https://doi.org/10.1101/pdb.prot095505

Article  Google Scholar 

Larue RC, Xing E, Kenney AD, Zhang Y, Tuazon JA, Li J, Yount JS, Li PK, Sharma A (2020) Rationally designed ACE2-derived peptides inhibit SARS-CoV-2. Bioconjug Chem 32:215–223. https://doi.org/10.1021/acs.bioconjchem.0c00664

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif