Weissellicin LM85 Purified from Weissella confusa LM85 Effluxes Potassium Ions and Depletes Proton Motive Force in Escherichia coli ATCC 25922

Bourdichon F, Patrone V, Fontana A, Milani G, Morelli L (2021) Safety demonstration of a microbial species for use in the food chain: Weissella confusa. Int J Food Microbiol 339:109028. https://doi.org/10.1016/j.ijfoodmicro.2020.109028

Article  CAS  PubMed  Google Scholar 

Buttress JA, Halte M, te Winkel JD, Erhardt M, Popp PF, Strahl H (2022) A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiol (Reading, England) 168:001227. https://doi.org/10.1099/mic.0.001227

Article  CAS  Google Scholar 

Cotter PD, Ross RP, Hill C (2013) Bacteriocins- A viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937

Article  CAS  PubMed  Google Scholar 

Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X (2021) Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: a review. Compr Rev Food Sci Food Saf 20:863–899. https://doi.org/10.1111/1541-4337.12658

Article  CAS  PubMed  Google Scholar 

Cupi D, Elvig-Jørgensen SG (2019) Safety assessment of Weissella confusa-A direct-fed microbial candidate. Regulat Toxicol Pharmacol 107:104414. https://doi.org/10.1016/j.yrtph.2019.104414

Article  Google Scholar 

Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M (2022) Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal 36:e24093. https://doi.org/10.1002/jcla.24093

Article  CAS  PubMed  Google Scholar 

Deng Z, Hou K, Zhao J, Wang H (2022) The probiotic properties of lactic acid bacteria and their applications in animal husbandry. Curr Microbiol 79:22. https://doi.org/10.1007/s00284-021-02722-3

Article  CAS  Google Scholar 

Du H, Zhou L, Lu Z, Bie X, Zhao H, Niu YD, Lu F (2020) Transcriptomic and proteomic profiling response of methicillin-resistant Staphylococcus aureus (MRSA) to a novel bacteriocin, plantaricin GZ1-27 and its inhibition of biofilm formation. Appl Microbiol Biotechnol 104:7957–7970. https://doi.org/10.1007/s00253-020-10589-w

Article  CAS  PubMed  Google Scholar 

Du R, Ping W, Ge J (2022) Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. LWT 153:112451. https://doi.org/10.1016/j.lwt.2021.112451

Article  CAS  Google Scholar 

Duan F, Xin G, Niu H, Huang W (2017) Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-12905-3

Article  CAS  Google Scholar 

Elsilk SE, Azab EA, Tahwash AM (2015) Bacteriocins-like substances produced by Enterococcus sanguinicola isolated from traditional Egyptain food Sires (Chicorium pumilum). JSM Microbiol 3:1018

Google Scholar 

Fanelli F, Montemurro M, Verni M, Garbetta A, Bavaro AR, Chieffi D, Cho GS, Franz CMAP, Rizzello CG, Fusco V (2023) Probiotic potential and safety assessment of type strains of Weissella and Periweissella species. Microbiol Spectr 11:e0304722. https://doi.org/10.1128/spectrum.03047-22

Article  CAS  PubMed  Google Scholar 

Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari IH (2022) Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 10:2896–2910. https://doi.org/10.1002/fsn3.2885

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goh HF, Philip K (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE 10:e0140434. https://doi.org/10.1371/journal.pone.0140434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong HS, Meng XC, Wang H (2010) Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 50:S37–S45. https://doi.org/10.1002/jobm.201000130

Article  PubMed  Google Scholar 

Huang S, Liu Y, Liu WQ, Neubauer P, Li J (2021) The Nonribosomal peptide valinomycin: from discovery to bioactivity and biosynthesis. Microorganisms 9:780. https://doi.org/10.3390/microorganisms9040780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang T, Li Z, Qu X, Yao G, Kwok LY, He Q, Zhang H (2024) Preliminary purification and partial characterization of a functional bacteriocin of Lacticaseibacillus paracasei Zhang and mining for its gene cluster. Probiotics Antimicro Prot. https://doi.org/10.1007/s12602-024-10249-9

Article  Google Scholar 

Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, Esatbeyoglu T, Bakhshayesh RV (2021) Lactic acid bacteria as antimicrobial agents: food safety and microbial food spoilage prevention. Foods 10:3131. https://doi.org/10.3390/foods10123131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Y, Mei C, Huang X, Gu Q, Song D (2020) Antibacterial activity and mechanism of a bacteriocin derived from the valine-cecropin a (1–8)-plantaricin zj5 (1–18) hybrid peptide against Escherichia coli O104. Food Biophys 15:442–451. https://doi.org/10.1007/s11483-020-09636-w

Article  Google Scholar 

Johnson MB, Criss AK (2013) Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. J Vis Exp 79:e50729. https://doi.org/10.3791/50729

Article  CAS  Google Scholar 

Kaur R, Tiwari SK (2016) Isolation, identification and characterization of Pediococcus pentosaceus LB44 and Weissella confusa LM85 for the presence of bacteriocin-like inhibitory substances (BLIS). Microbiology 85:540–547. https://doi.org/10.1134/S0026261716050088

Article  CAS  Google Scholar 

Kaur R, Tiwari SK (2017) Optimization of culture conditions for bacteriocin production by soil isolates Pediococcus pentosaceus LB44 and Weissella confusa LM85. Int J Infect 4:e15842. https://doi.org/10.5812/iji.15842

Article  Google Scholar 

Kim E, Yang SM, Kim HY (2023) Weissella and the two Janus faces of the genus. Appl Microbiol Biotechnol 107:1119–1127. https://doi.org/10.1007/s00253-023-12387-6

Article  CAS  PubMed  Google Scholar 

Kumar V, Sheoran P, Gupta A, Yadav JP, Tiwari SK (2016) Antibacterial property of bacteriocin produced by Lactobacillus plantarum LD4 isolated from a fermented food. Ann Microbiol 66:1431–1440. https://doi.org/10.1007/s13213-016-1230-6

Article  CAS  Google Scholar 

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002

Article  CAS  PubMed  Google Scholar 

Lakra AK, Domdi L, Hanjon G, Tilwani YM, Arul V (2020) Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 125:109261. https://doi.org/10.1016/j.lwt.2020.109261

Article  CAS  Google Scholar 

Leversee JA, Glatz BA (2001) Detection of the bacteriocin propionicin PLG-1 with polyvalent anti-PLG-1 antiserum. Appl Environ Microbiol 67:2235–2239. https://doi.org/10.1128/AEM.67.5.2235-2239.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K (2012) Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J Appl Microbiol 112:99–108. https://doi.org/10.1111/j.1365-2672.2011.05180.x

Article  CAS  PubMed  Google Scholar 

Miao J, Liu G, Ke C, Fan W, Li C, Chen Y, Dixon W, Song M, Cao Y, Xiao H (2016) Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control 65:63–72. https://doi.org/10.1016/j.foodcont.2016.01.023

Article  CAS  Google Scholar 

Onur M, Onlu H (2024) Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 55:663–679. https://doi.org/10.1007/s42770-023-01208-7

留言 (0)

沒有登入
gif