Antimicrobial Peptides: Potential Alternative to Antibiotics and Overcoming Limitations for Future Therapeutic Applications

Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2016.09.018

Article  PubMed  Google Scholar 

Albada B, Metzler-Nolte N (2017) Highly potent antibacterial organometallic peptide conjugates. Acc Chem Res 50(10):2510. https://doi.org/10.1021/acs.accounts.7b00282

Article  CAS  PubMed  Google Scholar 

Allahou LW, Madani SY, Seifalian A (2021) Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int J Biomater 2021:1–16. https://doi.org/10.1155/2021/3041969

Article  CAS  Google Scholar 

Almaaytah A, Mohammed G, Abualhaijaa A, Al-Balas Q (2017) Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Dev Ther 11:3159–3170. https://doi.org/10.2147/DDDT.S147450

Article  CAS  Google Scholar 

Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH (2018) Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. https://doi.org/10.2147/IDR.S166236

Article  PubMed  PubMed Central  Google Scholar 

Lewies A, Du Plessis LH, Wentzel JF (2019) Antimicrobial peptides: the Achilles’ heel of antibiotic resistance? Probiotics Antimicrob Proteins 11(2):370–381

Article  CAS  PubMed  Google Scholar 

Arias M, Piga K, Hyndman M, Vogel H (2018) Improving the activity of trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules 8(2):19. https://doi.org/10.3390/biom8020019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M (2020) Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2020.593215

Article  PubMed  PubMed Central  Google Scholar 

Bahar A, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575. https://doi.org/10.3390/ph6121543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahnsen JS, Franzyk H, Sayers EJ, Jones AT, Nielsen HM (2015) Cell-Penetrating antimicrobial peptides—prospectives for targeting intracellular infections. Pharm Res 32(5):1546–1556. https://doi.org/10.1007/s11095-014-1550-9

Article  CAS  PubMed  Google Scholar 

Baker JL, He X, Shi W (2019) Precision reengineering of the oral microbiome for caries management. Adv Dent Res. https://doi.org/10.1177/0022034519877386

Article  PubMed  PubMed Central  Google Scholar 

Ballantine RD, McCallion CE, Nassour E, Tokajian S, Cochrane SA (2019) Tridecaptin-inspired antimicrobial peptides with activity against multidrug-resistant Gram-negative bacteria. MedChemComm 10(3):484–487. https://doi.org/10.1039/C9MD00031C

Article  CAS  PubMed  PubMed Central  Google Scholar 

Band V, Weiss D (2014) Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics 4(1):18–41. https://doi.org/10.3390/antibiotics4010018

Article  PubMed Central  Google Scholar 

Bann SJ, Ballantine RD, Cochrane SA (2021) The tridecaptins: non-ribosomal peptides that selectively target Gram-negative bacteria. RSC Med Chem 12(4):538–551. https://doi.org/10.1039/D0MD00413H

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bechinger B, Gorr SU (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260

Article  CAS  PubMed  Google Scholar 

Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Peptide Sci. https://doi.org/10.1002/psc.2836

Article  Google Scholar 

Bellotti D, Remelli M (2022) Lights and shadows on the therapeutic use of antimicrobial peptides. Molecules 27(14):4584. https://doi.org/10.3390/molecules27144584

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK (2022) Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2022.113720

Article  PubMed  Google Scholar 

Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y (2021) Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci 22(21):11691. https://doi.org/10.3390/ijms222111691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borro BC, Nordström R, Malmsten M (2020) Microgels and hydrogels as delivery systems for antimicrobial peptides. Colloids Surf B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2020.110835

Article  PubMed  Google Scholar 

Braun K, Pochert A, Lindén M, Davoudi M, Schmidtchen A, Nordström R, Malmsten M (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170. https://doi.org/10.1016/j.jcis.2016.05.002

Article  CAS  PubMed  Google Scholar 

Brown KL, Poon GFT, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock REW, Johnson P (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol. https://doi.org/10.4049/jimmunol.1002508

Article  PubMed  Google Scholar 

Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci. https://doi.org/10.3390/ijms22137202

Article  PubMed  PubMed Central  Google Scholar 

Cameron A, Zaheer R, Adator EH, Barbieri R, Reuter T, McAllister TA (2019) Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins. https://doi.org/10.3390/toxins11080475

Article  PubMed  PubMed Central  Google Scholar 

Campos ML, De Souza CM, De Oliveira KBS, Dias SC, Franco OL (2018) The role of antimicrobial peptides in plant immunity. J Exp Bot. https://doi.org/10.1093/jxb/ery294

Article  PubMed  Google Scholar 

Cao Q, Ge C, Wang X, Harvey PJ, Zhang Z, Ma Y, Wang X, Jia X, Mobli M, Craik DJ, Jiang T, Yang J, Wei Z, Wang Y, Chang S, Yu R (2023) Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Briefings Bioinform. https://doi.org/10.1093/bib/bbad058

Article  Google Scholar 

Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL (2020) Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol. https://doi.org/10.3389/fmicb.2019.03097

Article  PubMed  PubMed Central  Google Scholar 

Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N (2020) Nanostructured antimicrobial peptides: the last push towards clinics. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107603

Article  PubMed  Google Scholar 

Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, de la Fuente JM, Mangoni ML (2017) Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1–21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 47:170–181. https://doi.org/10.1016/j.actbio.2016.09.041

Article  CAS  PubMed 

留言 (0)

沒有登入
gif