Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).
Ma, T. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).
Article CAS PubMed Google Scholar
Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).
Article CAS PubMed Google Scholar
Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).
Article CAS PubMed Google Scholar
Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Q. et al. Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022).
Article CAS PubMed Google Scholar
Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).
Article CAS PubMed Google Scholar
Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).
Article CAS PubMed PubMed Central Google Scholar
Alahakoon, S. B., Diwakara, S. D., Thompson, C. M. & Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49, 1344–1356 (2020).
Article CAS PubMed Google Scholar
Gui, B., Ding, H., Cheng, Y., Mal, A. & Wang, C. Structural design and determination of 3D covalent organic frameworks. Trends Chem. 4, 437–450 (2022).
Guan, X., Chen, F., Fang, Q. & Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357–1384 (2020).
Article CAS PubMed Google Scholar
Sasmal, H. S., Kumar Mahato, A., Majumder, P. & Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482–11498 (2022).
Article CAS PubMed Google Scholar
Wang, T. et al. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans. 52, 15178–15192 (2023).
Article CAS PubMed Google Scholar
Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).
Article CAS PubMed Google Scholar
Wang, Z., Zhang, S., Chen, Y., Zhang, Z. & Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49, 708–735 (2020).
Article CAS PubMed Google Scholar
Zhang, T., Zhang, G. & Chen, L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc. Chem. Res. 55, 795–808 (2022).
Article CAS PubMed Google Scholar
Liu, X. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48, 5266–5302 (2019).
Article CAS PubMed Google Scholar
Shi, Y., Yang, J., Gao, F. & Zhang, Q. Covalent organic frameworks: recent progress in biomedical applications. ACS Nano 17, 1879–1905 (2023).
Article CAS PubMed Google Scholar
Lei, Z. et al. Cyanurate-linked covalent organic frameworks enabled by dynamic nucleophilic aromatic substitution. J. Am. Chem. Soc. 144, 17737–17742 (2022).
Article CAS PubMed Google Scholar
Wang, Y. et al. Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nat. Commun. 13, 100 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xu, X., Cui, Q., Chen, H. & Huang, N. Carborane-based three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 145, 24202–24209 (2023).
Article CAS PubMed Google Scholar
Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).
Article CAS PubMed Google Scholar
Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).
Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).
Han, B. et al. Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 143, 7104–7113 (2021).
Article CAS PubMed Google Scholar
Uribe-Romo, F. J. et al. A crystalline imine-linked 3D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).
Article CAS PubMed Google Scholar
Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).
Article CAS PubMed Google Scholar
Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).
Article CAS PubMed Google Scholar
Lu, J. et al. Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43, 6116–6120 (2019).
Maschita, J. et al. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem. Int. Ed. 59, 15750–15758 (2020).
Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).
Díaz de Greñu, B. et al. Microwave-assisted synthesis of covalent organic frameworks: a review. ChemSusChem 14, 208–233 (2021).
Zhao, W. et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 1, 87–95 (2022).
Zhang, M. et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc. 142, 9169–9174 (2020).
留言 (0)