Massively parallel sample preparation for multiplexed single-cell proteomics using nPOP

Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slavov, N. Unpicking the proteome in single cells. Science 367, 512–513 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vistain, L. F. & Tay, S. Single-cell proteomics. Trends Biochem. Sci. 46, 661–672 (2021).

Article  CAS  PubMed  Google Scholar 

Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2017).

Article  Google Scholar 

Zhu, Y. et al. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew. Chem. Int. Ed. Engl. 57, 12370–12374 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Exploring functional protein covariation across single cells using nPOP. Genome Biol. 23, 261 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez-Avila, X. et al. Easy and accessible workflow for label-free single-cell proteomics. J. Am. Soc. Mass Spectrom. 34, 2374–2380 (2023).

Article  CAS  PubMed  Google Scholar 

Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slavov, N. Single-cell protein analysis by mass spectrometry. Curr. Opin. Chem. Biol. 60, 1–9 (2021).

Article  CAS  PubMed  Google Scholar 

Ctortecka, C. et al. An automated nanowell-array workflow for quantitative multiplexed single-cell proteomics sample preparation at high sensitivity. Mol. Cell. Proteomics 22, 100665 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modification landscapes of individual human cells by trapped ion mobility time-of-flight mass spectrometry. Nat. Commun. 13, 7246 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, A. Towards resolving proteomes in single cells. Nat. Methods 18, 856 (2021).

Article  CAS  PubMed  Google Scholar 

Ye, Z. et al. A deeper look at carrier proteome effects for single-cell proteomics. Commun. Biol. 5, 150 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye, Z. et al. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat. Commun. 15, 2474 (2023).

Article  Google Scholar 

Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2023).

Article  CAS  PubMed  Google Scholar 

MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slavov, N. Measuring protein shapes in living cells. J. Proteome Res. 20, 3017 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leduc, A., Harens, H. & Slavov, N. Modeling and interpretation of single-cell proteogenomic data. Preprint at https://arxiv.org/abs/2308.07465 (2023).

Slavov, N. Scaling up single-cell proteomics. Mol. Cell. Proteomics 21, 100179 (2022).

Article  CAS  PubMed  Google Scholar 

Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

Article  CAS  PubMed  Google Scholar 

Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 846–854 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenco, J., Jadeja, S. & Naplekov, D. K. Reversed-phase liquid chromatography of peptides for bottom-up proteomics: a tutorial. J. Proteome Res. 21, 2846–2892 (2022).

Article  CAS  PubMed  Google Scholar 

Ye, Z. et al. High-throughput and scalable single cell proteomics identifies over 5000 proteins per cell. Preprint at https://www.biorxiv.org/content/10.1101/2023.11.27.568953v1 (2023).

Derks, J. & Slavov, N. Strategies for increasing the depth and throughput of protein analysis by plexDIA. J. Proteome Res. 22, 697–705 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petelski, A. A. et al. Multiplexed single-cell proteomics using SCoPE2. Nat. Protoc. 16, 5398–5425 (2021).

Article  CAS  PubMed  Google Scholar 

Specht, H. & Slavov, N. Optimizing accuracy and depth of protein quantification in experiments using isobaric carriers. J. Proteome Res. 20, 880–887 (2021).

Article  CAS  PubMed  Google Scholar 

Hsu, J.-L., Huang, S.-Y., Chow, N.-H. & Chen, S.-H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

Article  CAS  PubMed  Google Scholar 

Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif