Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).
Article CAS PubMed PubMed Central Google Scholar
Slavov, N. Unpicking the proteome in single cells. Science 367, 512–513 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vistain, L. F. & Tay, S. Single-cell proteomics. Trends Biochem. Sci. 46, 661–672 (2021).
Article CAS PubMed Google Scholar
Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2017).
Zhu, Y. et al. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew. Chem. Int. Ed. Engl. 57, 12370–12374 (2018).
Article CAS PubMed PubMed Central Google Scholar
Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).
Article CAS PubMed PubMed Central Google Scholar
Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Exploring functional protein covariation across single cells using nPOP. Genome Biol. 23, 261 (2022).
Article CAS PubMed PubMed Central Google Scholar
Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sanchez-Avila, X. et al. Easy and accessible workflow for label-free single-cell proteomics. J. Am. Soc. Mass Spectrom. 34, 2374–2380 (2023).
Article CAS PubMed Google Scholar
Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).
Article CAS PubMed PubMed Central Google Scholar
Slavov, N. Single-cell protein analysis by mass spectrometry. Curr. Opin. Chem. Biol. 60, 1–9 (2021).
Article CAS PubMed Google Scholar
Ctortecka, C. et al. An automated nanowell-array workflow for quantitative multiplexed single-cell proteomics sample preparation at high sensitivity. Mol. Cell. Proteomics 22, 100665 (2023).
Article CAS PubMed PubMed Central Google Scholar
Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modification landscapes of individual human cells by trapped ion mobility time-of-flight mass spectrometry. Nat. Commun. 13, 7246 (2022).
Article CAS PubMed PubMed Central Google Scholar
Singh, A. Towards resolving proteomes in single cells. Nat. Methods 18, 856 (2021).
Article CAS PubMed Google Scholar
Ye, Z. et al. A deeper look at carrier proteome effects for single-cell proteomics. Commun. Biol. 5, 150 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ye, Z. et al. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat. Commun. 15, 2474 (2023).
Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2023).
Article CAS PubMed Google Scholar
MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023).
Article CAS PubMed PubMed Central Google Scholar
Slavov, N. Measuring protein shapes in living cells. J. Proteome Res. 20, 3017 (2021).
Article CAS PubMed PubMed Central Google Scholar
Leduc, A., Harens, H. & Slavov, N. Modeling and interpretation of single-cell proteogenomic data. Preprint at https://arxiv.org/abs/2308.07465 (2023).
Slavov, N. Scaling up single-cell proteomics. Mol. Cell. Proteomics 21, 100179 (2022).
Article CAS PubMed Google Scholar
Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).
Article CAS PubMed Google Scholar
Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).
Article PubMed PubMed Central Google Scholar
Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 846–854 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lenco, J., Jadeja, S. & Naplekov, D. K. Reversed-phase liquid chromatography of peptides for bottom-up proteomics: a tutorial. J. Proteome Res. 21, 2846–2892 (2022).
Article CAS PubMed Google Scholar
Ye, Z. et al. High-throughput and scalable single cell proteomics identifies over 5000 proteins per cell. Preprint at https://www.biorxiv.org/content/10.1101/2023.11.27.568953v1 (2023).
Derks, J. & Slavov, N. Strategies for increasing the depth and throughput of protein analysis by plexDIA. J. Proteome Res. 22, 697–705 (2023).
Article CAS PubMed PubMed Central Google Scholar
Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).
Article CAS PubMed PubMed Central Google Scholar
Petelski, A. A. et al. Multiplexed single-cell proteomics using SCoPE2. Nat. Protoc. 16, 5398–5425 (2021).
Article CAS PubMed Google Scholar
Specht, H. & Slavov, N. Optimizing accuracy and depth of protein quantification in experiments using isobaric carriers. J. Proteome Res. 20, 880–887 (2021).
Article CAS PubMed Google Scholar
Hsu, J.-L., Huang, S.-Y., Chow, N.-H. & Chen, S.-H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).
Article CAS PubMed Google Scholar
Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).
留言 (0)