The Role of mTOR in the Doxorubicin-Induced Cardiotoxicity: A Systematic Review

Yarmohammadi, F., Hesari, M., & Shackebaei, D. (2023). The role of mTOR in doxorubicin-altered cardiac metabolism: A promising therapeutic target of natural compounds. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-023-09820-7.

Article  PubMed  Google Scholar 

Szwed, A., Kim, E., & Jacinto, E. (2021). Regulation and metabolic functions of mTORC1 and mTORC2. Physiological Reviews, 101(3), 1371–1426. https://doi.org/10.1152/physrev.00026.2020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Tanani, M., Nsairat, H., Aljabali, A. A., Serrano-Aroca, Á., Mishra, V., Mishra, Y., & Tambuwala, M. M. (2023). Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sciences, 323, 121662. https://doi.org/10.1016/j.lfs.2023.121662.

Article  CAS  PubMed  Google Scholar 

Yarmohmmadi, F., Rahimi, N., Faghir-Ghanesefat, H., Javadian, N., Abdollahi, A., Pasalar, P., & Dehpour, A. R. (2017). Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. European Journal of Pharmacology, 796, 39–44. https://doi.org/10.1016/j.ejphar.2016.12.022.

Article  CAS  PubMed  Google Scholar 

Maayah, Z. H., Zhang, T., Forrest, M. L., Alrushaid, S., Doschak, M. R., Davies, N. M., & El-Kadi, A. O. S. (2018). DOX-Vit D, a novel doxorubicin delivery approach, inhibits human osteosarcoma cell proliferation by inducing apoptosis while inhibiting Akt and mTOR signaling pathways. Pharmaceutics, 10(3). https://doi.org/10.3390/pharmaceutics10030144

Ji, C., Yang, B., Yang, Y.-L., He, S.-H., Miao, D.-S., He, L., & Bi, Z.-G. (2010). Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene, 29(50), 6557–6568. https://doi.org/10.1038/onc.2010.379.

Article  CAS  PubMed  Google Scholar 

Xu, J., Ji, J., & Yan, X.-H. (2012). Cross-talk between AMPK and mTOR in regulating energy balance. Critical Reviews in Food Science and Nutrition, 52(5), 373–381. https://doi.org/10.1080/10408398.2010.500245.

Article  CAS  PubMed  Google Scholar 

Yao, H., Han, X., & Han, X. (2014). The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. American Journal of Cardiovascular Drugs, 14, 433–442. https://doi.org/10.1007/s40256-014-0089-9.

Article  CAS  PubMed  Google Scholar 

Cao, Y., Shen, T., Huang, X., Lin, Y., Chen, B., Pang, J., & Li, J. (2017). Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget, 8(3), 4837–4848. https://doi.org/10.18632/oncotarget.13596.

Article  PubMed  Google Scholar 

Lee, Y., Kwon, I., Jang, Y., Cosio-Lima, L., & Barrington, P. (2020). Endurance exercise attenuates doxorubicin-induced cardiotoxicity. Medicine and Science in Sports and Exercise, 52(1), 25–36. https://doi.org/10.1249/MSS.0000000000002094.

Article  CAS  PubMed  Google Scholar 

Timm, K. N., & Tyler, D. J. (2020). The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovascular Drugs and Therapy, 34(2), 255–269. https://doi.org/10.1007/s10557-020-06941-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, S., Song, P., & Zou, M.-H. (2012). Inhibition of AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. The Journal of Biological Chemistry, 287(11), 8001–8012. https://doi.org/10.1074/jbc.M111.315812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yarmohammadi, F., Hayes, A. W., & Karimi, G. (2021). Natural compounds against cytotoxic drug-induced cardiotoxicity: A review on the involvement of PI3K/Akt signaling pathway. Journal of Biochemical and Molecular Toxicology, 35(3), e22683. https://doi.org/10.1002/jbt.22683.

Article  CAS  PubMed  Google Scholar 

Lin, K., Rong, Y., Chen, D., Zhao, Z., Bo, H., Qiao, A., & Wang, J. (2020). Combination of ruthenium complex and doxorubicin synergistically inhibits cancer cell growth by down-regulating PI3K/AKT signaling pathway. Frontiers in Oncology, 10, 141. https://doi.org/10.3389/fonc.2020.00141.

Article  PubMed  PubMed Central  Google Scholar 

Chen, C., Lu, L., Yan, S., Yi, H., Yao, H., Wu, D., & Deng, X. (2018). Autophagy and doxorubicin resistance in cancer. Anti-Cancer Drugs, 29(1), 1–9. https://doi.org/10.1097/CAD.0000000000000572.

Article  CAS  PubMed  Google Scholar 

He, L., Wang, J., Yang, Y., Zou, P., Xia, Z., & Li, J. (2022). SIRT4 suppresses doxorubicin-induced cardiotoxicity by regulating the AKT/mTOR/autophagy pathway. Toxicology, 469, 153119. https://doi.org/10.1016/j.tox.2022.153119.

Article  CAS  PubMed  Google Scholar 

Xiao, B., Hong, L., Cai, X., Mei, S., Zhang, P., & Shao, L. (2019). The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncology Letters, 18(3), 2165–2172. https://doi.org/10.3892/ol.2019.10576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Zhou, H., & Chang, X. (2023). Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Archives of Toxicology, 97(12), 3023–3035. https://doi.org/10.1007/s00204-023-03599-w.

Article  CAS  PubMed  Google Scholar 

Koleini, N., & Kardami, E. (2017). Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget, 8(28), 46663–46680. https://doi.org/10.18632/oncotarget.16944.

Article  PubMed  PubMed Central  Google Scholar 

Chang, X., Liu, R., Li, R., Peng, Y., Zhu, P., & Zhou, H. (2023). Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. International Journal of Biological Sciences, 19(2), 426–448. https://doi.org/10.7150/ijbs.76223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Yu, J., Li, R., Zhou, H., & Chang, X. (2024). New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Cellular & Molecular Biology Letters, 29(1), 21. https://doi.org/10.1186/s11658-024-00536-2.

Article  CAS  Google Scholar 

Chang, X., Zhou, S., Liu, J., Wang, Y., Guan, X., Wu, Q., & Liu, R. (2024). Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. Journal of Ethnopharmacology, 320, 117371. https://doi.org/10.1016/j.jep.2023.117371.

Article  CAS  PubMed  Google Scholar 

Yu, W., Sun, H., Zha, W., Cui, W., Xu, L., Min, Q., & Wu, J. (2017). Apigenin attenuates adriamycin-induced cardiomyocyte apoptosis via the PI3K/AKT/mTOR pathway. Evidence-Based Complementary and Alternative Medicine eCAM, 2017, 2590676. https://doi.org/10.1155/2017/2590676.

Article  PubMed  PubMed Central  Google Scholar 

Wu, Y., Wang, J., Yu, X., Li, D., Han, X., & Fan, L. (2017). Sevoflurane ameliorates doxorubicin-induced myocardial injury by affecting the phosphorylation states of proteins in PI3K/Akt/mTOR signaling pathway. Cardiology Journal, 24(4), 409–418. https://doi.org/10.5603/CJ.a2017.0018.

Article  PubMed  Google Scholar 

Merino, H., & Singla, D. K. (2018). Secreted frizzled-related protein-2 inhibits doxorubicin-induced apoptosis mediated through the Akt-mTOR pathway in soleus muscle. Oxidative Medicine and Cellular Longevity, 2018, 6043064. https://doi.org/10.1155/2018/6043064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hullin, R., Métrich, M., Sarre, A., Basquin, D., Maillard, M., Regamey, J., & Martin, D. (2018). Diverging effects of enalapril or eplerenone in primary prevention against doxorubicin-induced cardiotoxicity. Cardiovascular Research, 114(2), 272–281. https://doi.org/10.1093/cvr/cvx162.

Article  CAS  PubMed  Google Scholar 

Sahu, R., Dua, T. K., Das, S., De Feo, V., & Dewanjee, S. (2019). Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food and Chemical Toxicology, 125, 503–519. https://doi.org/10.1016/j.fct.2019.01.034.

Article  CAS 

留言 (0)

沒有登入
gif