A network control theory pipeline for studying the dynamics of the structural connectome

Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).

PubMed  Google Scholar 

Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis. (Elsevier/Academic Press, 2016).

Menara, T., Katewa, V., Bassett, D. S. & Pasqualetti, F. The structured controllability radius of symmetric (brain) networks. In 2018 Annual American Control Conference (ACC) 2802–2807 (IEEE, Milwaukee, Wisconsin, USA, 2018).

Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014).

Google Scholar 

Kim, J. Z. & Bassett, D. S. Linear dynamics and control of brain networks. In Neural Engineering (ed. He, B.) 497–518 (Springer, (2020).

Karrer, T. M. et al. A practical guide to methodological considerations in the controllability of structural brain networks. J. Neural Eng. 17, 026031 (2020).

PubMed  PubMed Central  Google Scholar 

Seguin, C., Sporns, O. & Zalesky, A. Brain network communication: concepts, models and applications. Nat. Rev. Neurosci. 24, 557–574 (2023).

CAS  PubMed  Google Scholar 

Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

CAS  PubMed  Google Scholar 

Gu, S. et al. Optimal trajectories of brain state transitions. Neuroimage 148, 305–317 (2017).

PubMed  Google Scholar 

Tang, E. et al. Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nat. Commun. 8, 1252 (2017).

PubMed  PubMed Central  Google Scholar 

Tang, E. et al. Control of brain network dynamics across diverse scales of space and time. Phys. Rev. E 101, 062301 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks during seizure progression. Proc. Natl Acad. Sci. USA 118, e2006436118 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Medaglia, J. D. et al. Network controllability in the inferior frontal gyrus relates to controlled language variability and susceptibility to TMS. J. Neurosci. 38, 6399–6410 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Medaglia, J. D. et al. Language tasks and the network control role of the left inferior frontal gyrus. eneuro 8, ENEURO.0382-20.2021 (2021).

PubMed  PubMed Central  Google Scholar 

Muldoon, S. F. et al. Stimulation-based control of dynamic brain networks. PLOS Comput. Biol. 12, e1005076 (2016).

PubMed  PubMed Central  Google Scholar 

Cornblath, E. J. et al. Sex differences in network controllability as a predictor of executive function in youth. Neuroimage 188, 122–134 (2019).

PubMed  Google Scholar 

Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).

PubMed  PubMed Central  Google Scholar 

Parkes, L. et al. Network controllability in transmodal cortex predicts psychosis spectrum symptoms. Biol. Psychiatry 89, S370–S371 (2021).

Google Scholar 

Parkes, L. et al. Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome. Sci. Adv. 8, eadd2185 (2022).

PubMed  PubMed Central  Google Scholar 

Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).

PubMed  Google Scholar 

Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage 124, 1115–1119 (2016).

PubMed  Google Scholar 

Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Knox, J. E. et al. High-resolution data-driven model of the mouse connectome. Netw. Neurosci. 3, 217–236 (2019).

PubMed  Google Scholar 

Chiêm, B., Crevecoeur, F. & Delvenne, J.-C. Structure-informed functional connectivity driven by identifiable and state-specific control regions. Netw. Neurosci. 5, 591–613 (2021).

PubMed  PubMed Central  Google Scholar 

Jeganathan, J. et al. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage Clin. 19, 71–81 (2018).

PubMed  PubMed Central  Google Scholar 

Kenett, Y. N. et al. Driving the brain towards creativity and intelligence: a network control theory analysis. Neuropsychologia 118, 79–90 (2018).

PubMed  PubMed Central  Google Scholar 

Yuan, J., Ji, S., Luo, L., Lv, J. & Liu, T. Control energy assessment of spatial interactions among macro-scale brain networks. Hum. Brain Mapp. 43, 2181–2203 (2022).

PubMed  PubMed Central  Google Scholar 

Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13, 5812 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Singleton, S. P. et al. Time-resolved network control analysis links reduced control energy under dmt with the serotonin 2a receptor, signal diversity, and subjective experience. Preprint at https://www.biorxiv.org/content/10.1101/2023.05.11.540409v1 (2023).

Luppi, A. I. et al. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. Preprint at https://www.biorxiv.org/content/10.1101/2023.03.16.532981v1 (2023).

Maxwell, J. C. On governors. Proc. R. Soc. Lond. 16, 270–283 (1867).

Google Scholar 

Grasser, F., D’Arrigo, A., Colombi, S. & Rufer, A. C. JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49, 107–114 (2002).

Google Scholar 

Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

CAS  PubMed  PubMed Central  Google Scholar 

Papadopoulos, L., Kim, J. Z., Kurths, J. & Bassett, D. S. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Chaos 27, 073115 (2017).

PubMed  PubMed Central  Google Scholar 

Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

CAS  PubMed  PubMed Central  Google Scholar 

Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).

CAS  PubMed  Google Scholar 

Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry 90, 689–700 (2021).

PubMed  Google Scholar 

Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

PubMed  Google Scholar 

Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

PubMed  PubMed Central  Google Scholar 

Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

CAS  PubMed  Google Scholar 

Preti, M. G. & Van De Ville, D. Decoupling of brain function from

留言 (0)

沒有登入
gif