Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).
CAS PubMed PubMed Central Google Scholar
Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).
CAS PubMed PubMed Central Google Scholar
Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).
Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis. (Elsevier/Academic Press, 2016).
Menara, T., Katewa, V., Bassett, D. S. & Pasqualetti, F. The structured controllability radius of symmetric (brain) networks. In 2018 Annual American Control Conference (ACC) 2802–2807 (IEEE, Milwaukee, Wisconsin, USA, 2018).
Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014).
Kim, J. Z. & Bassett, D. S. Linear dynamics and control of brain networks. In Neural Engineering (ed. He, B.) 497–518 (Springer, (2020).
Karrer, T. M. et al. A practical guide to methodological considerations in the controllability of structural brain networks. J. Neural Eng. 17, 026031 (2020).
PubMed PubMed Central Google Scholar
Seguin, C., Sporns, O. & Zalesky, A. Brain network communication: concepts, models and applications. Nat. Rev. Neurosci. 24, 557–574 (2023).
Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).
Gu, S. et al. Optimal trajectories of brain state transitions. Neuroimage 148, 305–317 (2017).
Tang, E. et al. Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nat. Commun. 8, 1252 (2017).
PubMed PubMed Central Google Scholar
Tang, E. et al. Control of brain network dynamics across diverse scales of space and time. Phys. Rev. E 101, 062301 (2020).
CAS PubMed PubMed Central Google Scholar
Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).
CAS PubMed PubMed Central Google Scholar
Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks during seizure progression. Proc. Natl Acad. Sci. USA 118, e2006436118 (2021).
CAS PubMed PubMed Central Google Scholar
Medaglia, J. D. et al. Network controllability in the inferior frontal gyrus relates to controlled language variability and susceptibility to TMS. J. Neurosci. 38, 6399–6410 (2018).
CAS PubMed PubMed Central Google Scholar
Medaglia, J. D. et al. Language tasks and the network control role of the left inferior frontal gyrus. eneuro 8, ENEURO.0382-20.2021 (2021).
PubMed PubMed Central Google Scholar
Muldoon, S. F. et al. Stimulation-based control of dynamic brain networks. PLOS Comput. Biol. 12, e1005076 (2016).
PubMed PubMed Central Google Scholar
Cornblath, E. J. et al. Sex differences in network controllability as a predictor of executive function in youth. Neuroimage 188, 122–134 (2019).
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).
PubMed PubMed Central Google Scholar
Parkes, L. et al. Network controllability in transmodal cortex predicts psychosis spectrum symptoms. Biol. Psychiatry 89, S370–S371 (2021).
Parkes, L. et al. Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome. Sci. Adv. 8, eadd2185 (2022).
PubMed PubMed Central Google Scholar
Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).
Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage 124, 1115–1119 (2016).
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
CAS PubMed PubMed Central Google Scholar
Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).
CAS PubMed PubMed Central Google Scholar
Knox, J. E. et al. High-resolution data-driven model of the mouse connectome. Netw. Neurosci. 3, 217–236 (2019).
Chiêm, B., Crevecoeur, F. & Delvenne, J.-C. Structure-informed functional connectivity driven by identifiable and state-specific control regions. Netw. Neurosci. 5, 591–613 (2021).
PubMed PubMed Central Google Scholar
Jeganathan, J. et al. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage Clin. 19, 71–81 (2018).
PubMed PubMed Central Google Scholar
Kenett, Y. N. et al. Driving the brain towards creativity and intelligence: a network control theory analysis. Neuropsychologia 118, 79–90 (2018).
PubMed PubMed Central Google Scholar
Yuan, J., Ji, S., Luo, L., Lv, J. & Liu, T. Control energy assessment of spatial interactions among macro-scale brain networks. Hum. Brain Mapp. 43, 2181–2203 (2022).
PubMed PubMed Central Google Scholar
Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13, 5812 (2022).
CAS PubMed PubMed Central Google Scholar
Singleton, S. P. et al. Time-resolved network control analysis links reduced control energy under dmt with the serotonin 2a receptor, signal diversity, and subjective experience. Preprint at https://www.biorxiv.org/content/10.1101/2023.05.11.540409v1 (2023).
Luppi, A. I. et al. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. Preprint at https://www.biorxiv.org/content/10.1101/2023.03.16.532981v1 (2023).
Maxwell, J. C. On governors. Proc. R. Soc. Lond. 16, 270–283 (1867).
Grasser, F., D’Arrigo, A., Colombi, S. & Rufer, A. C. JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49, 107–114 (2002).
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).
CAS PubMed PubMed Central Google Scholar
Papadopoulos, L., Kim, J. Z., Kurths, J. & Bassett, D. S. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Chaos 27, 073115 (2017).
PubMed PubMed Central Google Scholar
Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).
CAS PubMed PubMed Central Google Scholar
Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).
Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry 90, 689–700 (2021).
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).
Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
PubMed PubMed Central Google Scholar
Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).
Preti, M. G. & Van De Ville, D. Decoupling of brain function from
留言 (0)