The Roles of RNA N6-methyladenosine Modifications in Systemic Lupus Erythematosus

Zhou, W., et al. (2022). The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Critical Reviews in Clinical Laboratory Sciences, 59(3), 203–218.

Article  CAS  PubMed  Google Scholar 

Huang, Y., et al. (2023). M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Research & Therapy, 25(1), 189.

Article  CAS  Google Scholar 

Li, L., et al. (2024). RNA methylation: A potential therapeutic target in autoimmune disease. International Reviews of Immunology, 43(3), 160–177.

Article  CAS  PubMed  Google Scholar 

Zaccara, S., Ries, R. J., & Jaffrey, S. R. (2019). Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 20(10), 608–624.

Article  CAS  PubMed  Google Scholar 

Ma, S., et al. (2021). The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. Journal of Experimental Medicine, 218(8), e20210279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, D., et al. (2019). Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature, 566(7743), 270–274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, M., Zha, X., & Wang, S. (2021). The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(2), 188522.

Article  CAS  PubMed  Google Scholar 

Dai, D., et al. (2018). N6-methyladenosine links RNA metabolism to cancer progression. Cell Death & Disease, 9(2), 124.

Article  Google Scholar 

Wang, Y. N., Yu, C. Y., & Jin, H. Z. (2020). RNA N(6)-Methyladenosine Modifications and the Immune Response. Journal of Immunology Research, 2020, 6327614.

PubMed  PubMed Central  Google Scholar 

Liu, C., et al. (2021). Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 19(1), 251.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., et al. (2021). The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Frontiers in Cell and Developmental Biology, 9, 755691.

Article  PubMed  PubMed Central  Google Scholar 

Song, R. H., et al. (2021). METTL3 gene polymorphisms contribute to susceptibility to autoimmune thyroid disease. Endocrine, 72(2), 495–504.

Article  CAS  PubMed  Google Scholar 

Song, R. H., et al. (2021). Inclusion of ALKBH5 as a candidate gene for the susceptibility of autoimmune thyroid disease. Advances in Medical Sciences, 66(2), 351–358.

Article  CAS  PubMed  Google Scholar 

Luo, Q., et al. (2020). Decreased ALKBH5, FTO, and YTHDF2 in Peripheral Blood Are as Risk Factors for Rheumatoid Arthritis. BioMed Research International, 2020, 5735279.

Article  PubMed  PubMed Central  Google Scholar 

Shi, W., et al. (2021). METTL3 Promotes Activation and Inflammation of FLSs Through the NF-kappaB Signaling Pathway in Rheumatoid Arthritis. Frontiers in Medicine (Lausanne), 8, 607585.

Article  Google Scholar 

Wang, J., et al. (2019). METTL3 Attenuates LPS-Induced Inflammatory Response in Macrophages via NF-kappaB Signaling Pathway. Mediators of Inflammation, 2019, 3120391.

Article  PubMed  PubMed Central  Google Scholar 

Mo, X. B., et al. (2019). Integrative analysis revealed potential causal genetic and epigenetic factors for multiple sclerosis. Journal of Neurology, 266(11), 2699–2709.

Article  CAS  PubMed  Google Scholar 

Zhou, J., et al. (2021). m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Science Advances, 7, eabg0470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, T. X., et al. (2020). A New Model of Spontaneous Colitis in Mice Induced by Deletion of an RNA m(6)A Methyltransferase Component METTL14 in T Cells. Cellular and Molecular Gastroenterology and Hepatology, 10(4), 747–761.

Article  PubMed  PubMed Central  Google Scholar 

Li, H. B., et al. (2017). m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 548(7667), 338–342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, Y., et al. (2021). METTL3-dependent m(6)A modification programs T follicular helper cell differentiation. Nature Communications, 12(1), 1333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, J., et al. (2018). m(6)A mRNA methylation sustains Treg suppressive functions. Cell Research, 28(2), 253–256.

Article  PubMed  PubMed Central  Google Scholar 

Luo, Q., et al. (2020). The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus. Molecular Genetics and Genomic Medicine, 8(9), e1298.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, Q., et al. (2020). Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. Disease Markers, 2020, 8193895.

Article  PubMed  PubMed Central  Google Scholar 

Zhao, X., et al. (2022). N6-methyladenosine-dependent modification of circGARS acts as a new player that promotes SLE progression through the NF-kappaB/A20 axis. Arthritis Research and Therapy, 24(1), 37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, H., et al. (2021). Integrative Analysis of m(6)A Regulator-Mediated RNA Methylation Modification Patterns and Immune Characteristics in Lupus Nephritis. Frontiers in Cell and Developmental Biology, 9, 724837.

Article  PubMed  PubMed Central  Google Scholar 

Li, L., et al. (2018). Potential link between m(6)A modification and systemic lupus erythematosusion and systemiclupus erythematosus. Molecular Immunology, 93, 55–63.

Article  CAS  PubMed  Google Scholar 

Wang, Y. N., & Jin, H. Z. (2020). Transcriptome-Wide m(6)A Methylation in Skin Lesions From Patients With Psoriasis Vulgaris. Frontiers in Cell and Developmental Biology, 8, 591629.

Article  PubMed  PubMed Central  Google Scholar 

De Jesus, D. F., et al. (2021). 287-OR_ M6A mRNA Methylation Regulates the Innate Immune Response in Human ß-­Cells. Diabetes, 70, https://doi.org/10.2337/db21-287-OR.

McFadden, M. J., et al. (2021). FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression. Journal of Molecular Biology, 434, 167247.

Li, X., et al. (2021). METTL3 is required for maintaining beta-cell function. Metabolism, 116, 154702.

Article  CAS  PubMed  Google Scholar 

Christiansen, J., et al. (2009). IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. Stem Cells International, 43, 187–195.

CAS  Google Scholar 

Sanghera, D. K., et al. (2008). Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Medical Genetics, 3(9), 59.

Article  Google Scholar 

留言 (0)

沒有登入
gif