Host circuit engagement of human cortical organoids transplanted in rodents

Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).

Article  PubMed  Google Scholar 

Kelley, K. W. & Pașca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185, 42–61 (2022).

Article  CAS  PubMed  Google Scholar 

Mansour, A. A., Schafer, S. T. & Gage, F. H. Cellular complexity in brain organoids: current progress and unsolved issues. Semin. Cell Dev. Biol. 111, 32–39 (2021).

Article  PubMed  Google Scholar 

Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Velasco, S., Paulsen, B. & Arlotta, P. 3D brain organoids: studying brain development and disease outside the embryo. Annu. Rev. Neurosci. 43, 375–389 (2020).

Article  CAS  PubMed  Google Scholar 

Qian, X., Song, H. & Ming, G. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013).

Article  CAS  PubMed  Google Scholar 

Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

Article  PubMed  Google Scholar 

Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

Article  CAS  PubMed  Google Scholar 

Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region–specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjorklund, A. & Stenevi, U. Neural Grafting in the Mammalian CNS (Elsevier, 1985).

Strömberg, I., Bygdeman, M., Goldstein, M., Seiger, Å. & Olson, L. Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci. Lett. 71, 271–276 (1986).

Article  PubMed  Google Scholar 

Brundin, P. et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res. 65, 235–240 (1986).

Article  CAS  PubMed  Google Scholar 

Strömberg, I. et al. Intracerebral xenografts of human mesencephalic tissue into athymic rats: immunochemical and in vivo electrochemical studies. Proc. Natl Acad. Sci. USA 85, 8331–8334 (1988).

Article  PubMed  PubMed Central  Google Scholar 

Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

Article  CAS  PubMed  Google Scholar 

Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e6 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Real, R. et al. In vivo modeling of human neuron dynamics and Down syndrome. Science 362, eaau1810 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

Article  CAS  PubMed  PubMed

留言 (0)

沒有登入
gif