Luetzenburg, G., Kroon, A. & Bjork, A. A. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Sci. Rep. 11, 22221 (2021).
Article CAS PubMed PubMed Central Google Scholar
Luetzenburg, G. Investigating coastal change with smartphone LiDAR. Nat. Rev. Earth Environ. 3, 140 (2022).
Tavani, S. et al. Smartphone assisted fieldwork: towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones. Earth Sci. Rev. 227, 103969 (2022).
Harley, M. D., Kinsela, M. A., Sanchez-Garcia, E. & Vos, K. Shoreline change mapping using crowd-sourced smartphone images. Coast Eng. 150, 175–189 (2019).
Jaud, M., Kervot, M., Delacourt, C. & Bertin, S. Potential of smartphone SfM photogrammetry to measure coastal morphodynamics. Remote Sens. (Basel) 11, 2242 (2019).
Corradetti, A., Seers, T., Billi, A. & Tavani, S. Virtual outcrops in a pocket: the smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today 31, 4–9 (2021).
Corradetti, A. et al. Benchmarking different SfM-MVS photogrammetric and iOS LiDAR acquisition methods for the digital preservation of a short-lived excavation: a case study from an area of sinkhole related subsidence. Remote Sens. (Basel) 14, 5187 (2022).
King, F., Kelly, R. & Fletcher, C. G. New opportunities for low-cost LiDAR-derived snow depth estimates from a consumer drone-mounted smartphone. Cold Reg. Sci. Technol. 207, 103757 (2023).
Kottner, S., Thali, M. J. & Gascho, D. Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging 32, 200535 (2023).
Teo, T.-A. & Yang, C.-C. Evaluating the accuracy and quality of an iPad Pro’s built-in lidar for 3D indoor mapping. Dev. Built Environ. 14, 100169 (2023).
Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T. & Janicka, J. Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement 219, 113286 (2023).
Alijani, Z. et al. A comparison of three surface roughness characterization techniques: photogrammetry, pin profiler, and smartphone-based LiDAR. Int. J. Digit. Earth 15, 2422–2439 (2023).
Riquelme, A., Tomás, R., Cano, M., Pastor, J. L. & Jordá-Bordehore, L. Extraction of discontinuity sets of rocky slopes using iPhone-12 derived 3DPC and comparison to TLS and SfM datasets. IOP Conf. Ser. Earth Environ. Sci. 833, 012056 (2021).
Furlani, S. et al. Sea caves and other landforms of the coastal scenery on Gozo Island (Malta): inventory and new data on their formation. Geosciences 13, 164 (2023).
Teppati Losè, L., Spreafico, A., Chiabrando, F. & Giulio Tonolo, F. Apple LiDAR sensor for 3D surveying: tests and results in the cultural heritage domain. Remote Sens. (Basel) 14, 4157 (2022).
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A. & Nothdurft, A. Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sens. (Basel) 13, 3129 (2021).
Mêda, P., Calvetti, D. & Sousa, H. Exploring the potential of iPad-LiDAR technology for building renovation diagnosis: a case study. Buildings 13, 456 (2023).
Laato, S. & Tregel, T. Into the Unown: improving location-based gamified crowdsourcing solutions for geo data gathering. Entertain. Comput. 46, 100575 (2023).
Song, B. et al. Smartphone-based LiDAR application for easy and accurate wound size measurement. J. Clin. Med. 12, 6042 (2023).
Article PubMed PubMed Central Google Scholar
Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards (Dordr.) 61, 5–28 (2010).
Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).
Young, A. P. et al. Comparison of airborne and terrestrial lidar estimates of seacliff erosion in Southern California. Photogramm. Eng. Remote Sens. 76, 421–427 (2010).
Lohani, B. & Ghosh, S. Airborne LiDAR technology: a review of data collection and processing systems. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 87, 567–579 (2017).
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphol. (Amst.) 179, 300–314 (2012).
Volpano, C. A., Zoet, L. K., Rawling, J. E., Theuerkauf, E. J. & Krueger, R. Three-dimensional bluff evolution in response to seasonal fluctuations in Great Lakes water levels. J. Gt. Lakes Res. 46, 1533–1543 (2020).
Hobbs, P. R. N. et al. Monitoring coastal change using terrestrial LiDAR. In Elevation Models for Geoscience Vol. 345 (eds Flemming, C., Marsh, S. H., & Giles, J. R. A.) 117–127 (The Geological Society of London, 2010).
Young, A. P. et al. Three years of weekly observations of coastal cliff erosion by waves and rainfall. Geomorphology 375, 107545 (2021).
James, M. R. & Quinton, J. N. Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS). Earth Surf. Proc. Landf. 39, 138–142 (2014).
Westoby, M. J. et al. Cost-effective erosion monitoring of coastal cliffs. Coast. Eng. 138, 152–164 (2018).
Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M. & Pierdicca, R. Mobile 3D scan LiDAR: a literature review. Geomat. Nat. Hazards Risk 12, 2387–2429 (2021).
Long, N., Millescamps, B., Guillot, B., Pouget, F. & Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. (Basel) 8, 387 (2016).
Froideval, L. et al. A low-cost open-source workflow to generate georeferenced 3D SfM photogrammetric models of rocky outcrops. Photogramm. Rec. 34, 365–384 (2019).
Chidburee, P., Mills, J. P., Miller, P. E. & Fieber, K. D. Towards a low-cost, real-time photogrammetric landslide monitoring system utilising mobile and cloud computing technology. Int. Arch. Photogramm. 41, 791–797 (2016).
Duffy, J. P. et al. Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 4, 7–19 (2018).
Letortu, P. et al. Examining high-resolution survey methods for monitoring cliff erosion at an operational scale. GISci. Remote Sens. 55, 457–476 (2017).
Warrick, J. A., Ritchie, A. C., Adelman, G., Adelman, K. & Limber, P. W. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J. Coast. Res. 33, 39–55 (2017).
Kim, S. et al. Feasibility of UAV photogrammetry for coastal monitoring: a case study in Imlang Beach, South Korea. J. Coast. Res. 90, 386–392 (2019).
Tavani, S. et al. Photogrammetric 3D model via smartphone GNSS sensor: workflow, error estimate, and best practices. Remote Sens. (Basel) 12, 3616 (2020).
Lague, D., Brodu, N. & Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 82, 10–26 (2013).
Nourbakhshbeidokhti, S., Kinoshita, A. M., Chin, A. & Florsheim, J. L. A workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance. Remote Sens. (Basel) 11, 586 (2019).
Barnhart, T. B. & Crosby, B. T. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens. (Basel) 5, 2813–2837 (2013).
Guenther, M., Heenkenda, M. K., Leblon, B., Morris, D. & Freeburn, J. Estimating tree diameter at breast height (DBH) using iPad Pro LiDAR sensor in boreal forests. Can. J. Remote Sens. 50 https://doi.org/10.1080/07038992.2023.2295470 (2024).
留言 (0)