High-resolution topographic surveying and change detection with the iPhone LiDAR

Luetzenburg, G., Kroon, A. & Bjork, A. A. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Sci. Rep. 11, 22221 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luetzenburg, G. Investigating coastal change with smartphone LiDAR. Nat. Rev. Earth Environ. 3, 140 (2022).

Article  Google Scholar 

Tavani, S. et al. Smartphone assisted fieldwork: towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones. Earth Sci. Rev. 227, 103969 (2022).

Article  Google Scholar 

Harley, M. D., Kinsela, M. A., Sanchez-Garcia, E. & Vos, K. Shoreline change mapping using crowd-sourced smartphone images. Coast Eng. 150, 175–189 (2019).

Article  Google Scholar 

Jaud, M., Kervot, M., Delacourt, C. & Bertin, S. Potential of smartphone SfM photogrammetry to measure coastal morphodynamics. Remote Sens. (Basel) 11, 2242 (2019).

Article  Google Scholar 

Corradetti, A., Seers, T., Billi, A. & Tavani, S. Virtual outcrops in a pocket: the smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today 31, 4–9 (2021).

Article  Google Scholar 

Corradetti, A. et al. Benchmarking different SfM-MVS photogrammetric and iOS LiDAR acquisition methods for the digital preservation of a short-lived excavation: a case study from an area of sinkhole related subsidence. Remote Sens. (Basel) 14, 5187 (2022).

Article  Google Scholar 

King, F., Kelly, R. & Fletcher, C. G. New opportunities for low-cost LiDAR-derived snow depth estimates from a consumer drone-mounted smartphone. Cold Reg. Sci. Technol. 207, 103757 (2023).

Article  Google Scholar 

Kottner, S., Thali, M. J. & Gascho, D. Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging 32, 200535 (2023).

Article  Google Scholar 

Teo, T.-A. & Yang, C.-C. Evaluating the accuracy and quality of an iPad Pro’s built-in lidar for 3D indoor mapping. Dev. Built Environ. 14, 100169 (2023).

Article  Google Scholar 

Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T. & Janicka, J. Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement 219, 113286 (2023).

Article  Google Scholar 

Alijani, Z. et al. A comparison of three surface roughness characterization techniques: photogrammetry, pin profiler, and smartphone-based LiDAR. Int. J. Digit. Earth 15, 2422–2439 (2023).

Article  Google Scholar 

Riquelme, A., Tomás, R., Cano, M., Pastor, J. L. & Jordá-Bordehore, L. Extraction of discontinuity sets of rocky slopes using iPhone-12 derived 3DPC and comparison to TLS and SfM datasets. IOP Conf. Ser. Earth Environ. Sci. 833, 012056 (2021).

Article  Google Scholar 

Furlani, S. et al. Sea caves and other landforms of the coastal scenery on Gozo Island (Malta): inventory and new data on their formation. Geosciences 13, 164 (2023).

Article  Google Scholar 

Teppati Losè, L., Spreafico, A., Chiabrando, F. & Giulio Tonolo, F. Apple LiDAR sensor for 3D surveying: tests and results in the cultural heritage domain. Remote Sens. (Basel) 14, 4157 (2022).

Article  Google Scholar 

Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A. & Nothdurft, A. Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sens. (Basel) 13, 3129 (2021).

Article  Google Scholar 

Mêda, P., Calvetti, D. & Sousa, H. Exploring the potential of iPad-LiDAR technology for building renovation diagnosis: a case study. Buildings 13, 456 (2023).

Article  Google Scholar 

Laato, S. & Tregel, T. Into the Unown: improving location-based gamified crowdsourcing solutions for geo data gathering. Entertain. Comput. 46, 100575 (2023).

Article  Google Scholar 

Song, B. et al. Smartphone-based LiDAR application for easy and accurate wound size measurement. J. Clin. Med. 12, 6042 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards (Dordr.) 61, 5–28 (2010).

Article  Google Scholar 

Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).

Article  Google Scholar 

Young, A. P. et al. Comparison of airborne and terrestrial lidar estimates of seacliff erosion in Southern California. Photogramm. Eng. Remote Sens. 76, 421–427 (2010).

Article  Google Scholar 

Lohani, B. & Ghosh, S. Airborne LiDAR technology: a review of data collection and processing systems. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 87, 567–579 (2017).

Article  CAS  Google Scholar 

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphol. (Amst.) 179, 300–314 (2012).

Article  Google Scholar 

Volpano, C. A., Zoet, L. K., Rawling, J. E., Theuerkauf, E. J. & Krueger, R. Three-dimensional bluff evolution in response to seasonal fluctuations in Great Lakes water levels. J. Gt. Lakes Res. 46, 1533–1543 (2020).

Article  Google Scholar 

Hobbs, P. R. N. et al. Monitoring coastal change using terrestrial LiDAR. In Elevation Models for Geoscience Vol. 345 (eds Flemming, C., Marsh, S. H., & Giles, J. R. A.) 117–127 (The Geological Society of London, 2010).

Young, A. P. et al. Three years of weekly observations of coastal cliff erosion by waves and rainfall. Geomorphology 375, 107545 (2021).

Article  Google Scholar 

James, M. R. & Quinton, J. N. Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS). Earth Surf. Proc. Landf. 39, 138–142 (2014).

Article  Google Scholar 

Westoby, M. J. et al. Cost-effective erosion monitoring of coastal cliffs. Coast. Eng. 138, 152–164 (2018).

Article  Google Scholar 

Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M. & Pierdicca, R. Mobile 3D scan LiDAR: a literature review. Geomat. Nat. Hazards Risk 12, 2387–2429 (2021).

Article  Google Scholar 

Long, N., Millescamps, B., Guillot, B., Pouget, F. & Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. (Basel) 8, 387 (2016).

Article  Google Scholar 

Froideval, L. et al. A low-cost open-source workflow to generate georeferenced 3D SfM photogrammetric models of rocky outcrops. Photogramm. Rec. 34, 365–384 (2019).

Article  Google Scholar 

Chidburee, P., Mills, J. P., Miller, P. E. & Fieber, K. D. Towards a low-cost, real-time photogrammetric landslide monitoring system utilising mobile and cloud computing technology. Int. Arch. Photogramm. 41, 791–797 (2016).

Google Scholar 

Duffy, J. P. et al. Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 4, 7–19 (2018).

Article  Google Scholar 

Letortu, P. et al. Examining high-resolution survey methods for monitoring cliff erosion at an operational scale. GISci. Remote Sens. 55, 457–476 (2017).

Article  Google Scholar 

Warrick, J. A., Ritchie, A. C., Adelman, G., Adelman, K. & Limber, P. W. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J. Coast. Res. 33, 39–55 (2017).

Article  Google Scholar 

Kim, S. et al. Feasibility of UAV photogrammetry for coastal monitoring: a case study in Imlang Beach, South Korea. J. Coast. Res. 90, 386–392 (2019).

Article  Google Scholar 

Tavani, S. et al. Photogrammetric 3D model via smartphone GNSS sensor: workflow, error estimate, and best practices. Remote Sens. (Basel) 12, 3616 (2020).

Article  Google Scholar 

Lague, D., Brodu, N. & Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 82, 10–26 (2013).

Article  Google Scholar 

Nourbakhshbeidokhti, S., Kinoshita, A. M., Chin, A. & Florsheim, J. L. A workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance. Remote Sens. (Basel) 11, 586 (2019).

Article  Google Scholar 

Barnhart, T. B. & Crosby, B. T. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens. (Basel) 5, 2813–2837 (2013).

Article  Google Scholar 

Guenther, M., Heenkenda, M. K., Leblon, B., Morris, D. & Freeburn, J. Estimating tree diameter at breast height (DBH) using iPad Pro LiDAR sensor in boreal forests. Can. J. Remote Sens. 50 https://doi.org/10.1080/07038992.2023.2295470 (2024).

留言 (0)

沒有登入
gif