Regulation of NS5B Polymerase Activity of Hepatitis C Virus by Target Specific Phytotherapeutics: An In-Silico Molecular Dynamics Approach

World Health Organization. (2021). Global progress report on HIV, viral hepatitis, and sexually transmitted infections, 2021. [Accessed on 9 June 2024] https://iris.who.int/bitstream/handle/10665/341412/9789240027077-eng.pdf?sequence=1.

Banerjee, A., Ray, R. B., & Ray, R. (2010). Oncogenic potential of hepatitis C virus proteins. Viruses, 2, 2108–2133. https://doi.org/10.3390/v2092108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadia, M., Carlo, T., Maria, C. L., & Alfredo, F. (2014). Update on different aspects of HCV variability: Focus on NS5B polymerase. BMC Infectious Diseases, 14, 1–6. https://doi.org/10.1186/1471-2334-14-S5-S1.

Article  Google Scholar 

Chang, K. O., Kim, Y., Lovell, S., Rathnayake, A. D., & Groutas, W. C. (2019). Antiviral drug discovery: norovirus proteases and development of inhibitors. Viruses, 11(2), 197. https://doi.org/10.3390/v11020197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature Reviews. Molecular Cell Biology, 20(11), 681–697. https://doi.org/10.1038/s41580-019-0163-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di-Bisceglie, A. M., & Hoofnagle, J. H. (2002). Optimal therapy of hepatitis C. Hepatology, 36, S121–S127.

PubMed  Google Scholar 

Mc-Hutchison, J. G., Gordon, S. C., Schiff, E. R., Shiffman, M. L., Lee, W. M., Rustgi, V. K., & Goodman, Z. D. (1998). Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. The New England Journal of Medicine, 339, 1485–1492. https://doi.org/10.1056/NEJM199811193392101.

Article  CAS  PubMed  Google Scholar 

Doyle, J. S., Aspinall, E., Liew, D., Thompson, A. J., & Hellard, M. E. (2013). Current and emerging antiviral treatments for hepatitis C infection. British Journal of Clinical Pharmacology, 75, 931–43. https://doi.org/10.1111/j.1365-2125.2012.04419.x.

Article  CAS  PubMed  Google Scholar 

Grebely, J., Matthews, G. V., & Dore, G. J. (2011). Treatment of acute HCV infection. Nature Reviews Gastroenterology & Hepatology, 8, 265–274. https://doi.org/10.1016/S1473-3099(13)70075-6.

Article  CAS  Google Scholar 

Bhatia, H. K., Singh, H., Grewal, N., & Natt, N. K. (2014). Sofosbuvir: A novel treatment option for chronic hepatitis C infection. Journal of Pharmacology and Pharmacotherapeutics, 5, 278–284. https://doi.org/10.4103/0976-500X.142464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calland, N., Dubuisson, J., Rouille, Y., & Seron, K. (2012). Hepatitis C virus and natural compounds: a new antiviral approach? Viruses, 4, 2197–2217. https://doi.org/10.3390/v4102197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jardim, A. C. G., Shimizu, J. F., & Rahal, P. (2018). Plant-derived antivirals against hepatitis c virus infection. Virology Journal, 15, 34. https://doi.org/10.1186/s12985-018-0945-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

Article  CAS  PubMed  Google Scholar 

Mofed, D., Ahmed, W., Zekri, A. R., Said, O., Rahouma, M., & Faraag, A. H. I. (2020). The antiviral efficacy of withania somnifera (Ashwagandha) against hepatitis C virus activity: in vitro and in silico study. Advances in Microbiology, 10, 463–477. https://doi.org/10.4236/aim.2020.109035.

Article  CAS  Google Scholar 

Shaikh, B. T., & Hatcher, J. (2005). Complementary and alternative medicine in Pakistan: prospects and limitations. eCAM, 2, 139–142. https://doi.org/10.1093/ecam/neh088.

Article  PubMed  PubMed Central  Google Scholar 

Paoli, P. (2021). Enzymatic inhibitors from natural sources: a huge collection of new potential drugs. Biomolecules, 11, 133. https://doi.org/10.3390/biom11020133.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, P., & Liu, Y. (2022). Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) therapy. Molecules, 28, 272. https://doi.org/10.3390/molecules28010272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, G. B., Xiao, Y. H., Zhang, Q. Y., Zhou, M., & Liao, S. G. (2018). Hepatoprotective natural triterpenoids. European Journal of Medicinal Chemistry, 145, 691–716. https://doi.org/10.1016/j.ejmech.2018.01.011.

Article  CAS  PubMed  Google Scholar 

Astani, A., & Schnitzler, P. (2014). Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iranian Journal of Microbiology, 6, 149–55. PMID: 25870747.

PubMed  PubMed Central  Google Scholar 

Ogaly, H. A., Aldulmani, S. A. A., Al-Zahrani, F. A. M., & Abd-Elsalam, R. M. (2022). D-carvone attenuates CCl4-induced liver fibrosis in rats by inhibiting oxidative stress and TGF-ß 1/SMAD3 signaling pathway. Biology, 11, 739. https://doi.org/10.3390/biology11050739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira, F. A., Chaves, M. H., Almeida, F. R., Lima, R. C. J., Silva, R. M., Maia, J. L., Brito, G. A., Santos, F. A., & Rao, V. S. (2005). Protective effect of alpha- and beta-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice. Journal of Ethnopharmacology, 8(98), 103–8. https://doi.org/10.1016/j.jep.2005.01.036.

Article  CAS  Google Scholar 

Amini, R., Asle-Rousta, M., & Aghazadeh, S. (2020). Hepatoprotective effect of limonene against chronic immobilization induced liver damage in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 2053–2059. https://doi.org/10.1007/s00210-020-01915-0.

Article  CAS  PubMed  Google Scholar 

Toppo, E. S., Darvin, S., Esakkimuthu, S., Buvanesvaragurunathan, K., Ajeesh Krishna, T. P., Antony Caesar, S., Stalin, A., & Balakrishna, K. (2018). Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomedicine & Pharmacotherapy, 107, 979–988. https://doi.org/10.1016/j.biopha.2018.08.

Article  CAS  Google Scholar 

Riaz, A., Rasul, A., Hussain, G.(2018). Astragalin: a bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological Sciences, 9794625. https://doi.org/10.1155/2018/9794625.

Locatelli, M., Macchione, N., Ferrante, C., Chiavaroli, A., Recinella, L., & Carradori, S. (2018). Graminex pollen: Phenolic pattern, colorimetric analysis and protective effects in immortalized prostate cells (PC3) and rat prostate challenged with LPS. Molecules, 23, 1145. https://doi.org/10.3390/molecules23051145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Middleton, E., & Kandaswami, C. (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochemical Pharmacology, 43, 1167–1179. https://doi.org/10.1016/0006-2952(92)90489-6.

Article  CAS  PubMed  Google Scholar 

Dan, L. V., Zhu, C. Q., & Liu, L. (2015). Sesamin ameliorates oxidative liver injury induced by carbon tetrachloride in rat. International Journal of Clinical and Experimental Pathology, 8, 5733–5738.

Google Scholar 

Wang, Z., Li, Q., & Xiang, M. (2017). Astragaloside alleviates hepatic fibrosis function via PAR2 signaling pathway in diabetic rats. Cellular Physiology and Biochemistry, 41, 1156–1166. https://doi.org/10.1159/000464122.

Article  CAS  PubMed  Google Scholar 

Govea, S. M., Rivas, E. A. M., Rodriguez, H. R., & Lozano Sepulveda, C. J. A. (2016). Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Experimental and Therapeutic Medicine, 11, 619–624. https://doi.org/10.3892/etm.2015.2923.

Article  CAS  Google Scholar 

Punvittayagul, C., Chariyakornkul, A., Jarukamjorn, K., & Wongpoomchai, R. (2021). Protective role of vanillic acid against diethylnitrosamine- and 1,2-dimethylhydrazine-induced hepatocarcinogenesis in rats. Molecules, 26, 2718.

留言 (0)

沒有登入
gif