Ameliorative effect of nodakenin in combating TNBS-induced ulcerative colitis by suppressing NFƙB-mediated NLRP3 inflammasome pathway

Abhirami NR, Laksmi VV, Deepitha AM (2022) A review on prevalence of inflammatory bowel disease in India. J Drug Deliv Ther 12:219–223. https://doi.org/10.22270/JDDT.V12I6.5403

Alatab S, Sepanlou SG, Ikuta K et al (2020) The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5:17–30. https://doi.org/10.1016/S2468-1253(19)30333-4

Article  Google Scholar 

Cai Z, Wang S, Li J (2021) Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne) 8: 765474

Carneiro A, Matos MJ, Uriarte E, Santana L (2021) Trending topics on coumarin and its derivatives in 2020. Molecules 26:501

Cury DB, Mizsputen SJ, Versolato C et al (2013) Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis. Cell Immunol 282:66–70. https://doi.org/10.1016/j.cellimm.2013.04.004

Article  PubMed  PubMed Central  Google Scholar 

Danese S, Solitano V, Jairath V, Peyrin-Biroulet L (2022) The future of drug development for inflammatory bowel disease: the need to ACT (advanced combination treatment). Gut 71:2380-2387

Di Stasi LC (2021) Coumarin derivatives in inflammatory bowel disease. Molecules 26:422

Dieleman LA, Palmen MJHJ, Akol H et al (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385-91

Elmaksoud HAA, Motawea MH, Desoky AA et al (2021) Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed Pharmacother 142. https://doi.org/10.1016/j.biopha.2021.112073

Gandhi T, Patel B, Patel D et al (2021) Optimization and validation of polyherbal formulation by applying boxbehnken design for the treatment of inflammatory bowel disease in experimental animals. Curr Drug Ther 17:17–29. https://doi.org/10.2174/1574885517666211220130024

Article  Google Scholar 

Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131-138

Guo G, Shi F, Zhu J et al (2020) Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum Exp Toxicol 39:477–491. https://doi.org/10.1177/0960327119892042

Article  PubMed  Google Scholar 

Haftcheshmeh SM, Abedi M, Mashayekhi K et al (2022) Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 36:1216–1230. https://doi.org/10.1002/PTR.7407

Article  PubMed  Google Scholar 

Jain M, Venkataraman J (2021) Inflammatory bowel disease: an Indian perspective. Indian J Med Res 153:421–430

Article  PubMed  PubMed Central  Google Scholar 

Jiminez JA, Uwiera TC, Inglis GD, Uwiera RRE (2015) Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 7:29

Kang SY, Kim YC (2007) Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships. Arch Pharm Res 30:1368-73

Kim DH, Kim DY, Kim YC et al (2007) Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice. Life Sci 80:1944–1950. https://doi.org/10.1016/j.lfs.2007.02.023

Article  PubMed  Google Scholar 

Kim JJ, Shajib MS, Manocha MM, Khan WI (2012) Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp 3678. https://doi.org/10.3791/3678

Kim SL, Shin MW, Kim SW (2022) Lipocalin 2 activates the NLRP3 inflammasome via LPS-induced NF-κB signaling and plays a role as a pro-inflammatory regulator in murine macrophages. Mol Med Rep 26. https://doi.org/10.3892/mmr.2022.12875

Kim Y-J, Park S-J, Kim T-J (2011) Anti-allergic effects of nodakenin in IgE/Ag-induced type I hypersensitivity. J Life Sci 21:1721–1725. https://doi.org/10.5352/JLS.2011.21.12.1721

Article  Google Scholar 

Kirsch G, Abdelwahab AB, Chaimbault P (2016) Natural and synthetic coumarins with effects on inflammation. Molecules 21:1322

Kobayashi T, Siegmund B, Le Berre C et al (2020) Ulcerative colitis. Nat Rev Dis Primers 6. https://doi.org/10.1038/s41572-020-0205-x

Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344–1350. https://doi.org/10.1016/0016-5085(84)90202-6

Article  PubMed  Google Scholar 

Li JH, Yu JP, Yu HG et al (2005) Expression and significance of nuclear factor κB p65 in colon tissues of rats with TNBS-induced colitis. World J Gastroenterol WJG 11:1759. https://doi.org/10.3748/WJG.V11.I12.1759

Article  PubMed  Google Scholar 

Li P, Lei J, Hu G et al (2019) Matrine mediates inflammatory response via gut microbiota in TNBS-induced murine colitis. Front Physiol 10:444299. https://doi.org/10.3389/FPHYS.2019.00028/BIBTEX

Article  Google Scholar 

Liao Y, Lin X, Li J et al (2021a) Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation. Nephrology 26:78–87. https://doi.org/10.1111/nep.13781

Article  PubMed  Google Scholar 

Liao Y, Lin X, Li J et al (2021b) Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation. Nephrology (Carlton) 26:78–87. https://doi.org/10.1111/NEP.13781

Article  PubMed  Google Scholar 

Lim JY, Lee JH, Yun DH et al (2021) Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine 81. https://doi.org/10.1016/j.phymed.2020.153411

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  PubMed  Google Scholar 

Lopes de Oliveira GA, Alarcón de la Lastra C, Rosillo MÁ et al (2019) Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem Biol Interact 297:25–33. https://doi.org/10.1016/j.cbi.2018.10.020

Article  PubMed  Google Scholar 

Luo X, Yu Z, Deng C et al (2017) Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci Rep 7. https://doi.org/10.1038/s41598-017-12562-6

Mao L, Kitani A, Hiejima E et al (2020) Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis. J Clin Investig 130:1793–1807. https://doi.org/10.1172/JCI128322

Article  PubMed  PubMed Central  Google Scholar 

Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175. https://doi.org/10.1016/s0021-9258(19)45228-9

Article  PubMed  Google Scholar 

Morris GP, Beck PL, Herridge MS et al (1989) Hapten-induced model of chronic inflammation and ulceration in the colon rat. Gastroenterology 96:795-803

Mustafa M (2022) Evaluation of NLRP3 inflammasome protein expression in ulcerative colitis. Wiad Lek 75:641–644. https://doi.org/10.36740/wlek202203113

Natarajan K, Abraham P, Kota R, Isaac B (2018) NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 118:766–783. https://doi.org/10.1016/j.fct.2018.06.040

Article  PubMed  Google Scholar 

Oh SY, Cho KA, Kang JL et al (2014) Comparison of experimental mouse models of inflammatory bowel disease. Int J Mol Med 33:333–340. https://doi.org/10.3892/ijmm.2013.1569

Article  PubMed  Google Scholar 

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Article  PubMed  Google Scholar 

Park SJ, Cha HS, Lee YH et al (2014) Effect of nodakenin on atopic dermatitis-like skin lesions. Biosci Biotechnol Biochem 78:1568–1571. https://doi.org/10.1080/09168451.2014.923296

Article  PubMed  Google Scholar 

Peng J, Zheng TT, Li X et al (2019) Plant-derived alkaloids: the promising disease-modifying agents for inflammatory bowel disease. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00351

Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18:279–288

Article  PubMed  PubMed Central  Google Scholar 

Rim HK, Cho W, Sung SH, Lee KT (2012) Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. J Pharmacol Exp Ther 342:654–664. https://doi.org/10.1124/JPET.112.194613

Romero M, Vera B, Galisteo M et al (2017) Protective vascular effects of quercitrin in acute TNBS-colitis in rats: the role of nitric oxide. Food Funct 8:2702–2711. https://doi.org/10.1039/C7FO00755H

Article  PubMed  Google Scholar 

Salas A, Gironella M, Salas A et al (2002) Nitric oxide supplementation ameliorates dextran sulfate sodium-induced colitis in mice. Lab Investig 82:597–608

Saxena A, Kaur K, Hegde S et al (2014) Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. J Tradit Complement Med 4:203–217. https://doi.org/10.4103/2225-4110.139111

Article  PubMed  PubMed Central  Google Scholar 

Segal JP, Jean-Frédéric LeBlanc A, Hart AL (2021) Ulcerative colitis: an update. Clin Med (Lond) 21:135–139. https://doi.org/10.7861/CLINMED.2021-0080

Sharifi-Rad J, Cruz-Martins N, López-Jornet P et al (2021) Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev 2021. https://doi.org/10.1155/2021/6492346

Singh G, Kaur J, Kaur M et al (2020) Anti-nociceptive and anti-inflammatory effect of imperatorin: evidences for involvement of COX-2, iNOS, NFκB and inflammatory cytokines. Int J Neurosci 130:176–185. https://doi.org/10.1080/00207454.2019.1667789

Article  PubMed  Google Scholar 

Snell A, Segal J, Limdi J, Banerjee R (2021) Inflammatory bowel disease in India: challenges and opportunities. Frontline Gastroenterol 12:390–396

Article  PubMed  Google Scholar 

Song Y, Zhao Y, Ma Y et al (2021) Biological functions of NLRP3 inflammasome: a therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 60:61–75

Article  PubMed 

留言 (0)

沒有登入
gif