Deferiprone promoted remyelination and functional recovery through enhancement of oligodendrogenesis in experimental demyelination animal model

Agrawal S et al (2018) Brain mitochondrial iron accumulates in Huntington’s disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radical Biol Med 120:317–329

Article  CAS  Google Scholar 

Alcalde LA et al (2018) Iron chelator deferiprone rescues memory deficits, hippocampal BDNF levels and antioxidant defenses in an experimental model of memory impairment. Biometals 31(6):927–940

Article  CAS  PubMed  Google Scholar 

Blakemore W (1974) Pattern of remyelination in the CNS. Nature 249(5457):577–578

Article  CAS  PubMed  Google Scholar 

Chari DM (2007) Remyelination in multiple sclerosis. Int Rev Neurobiol 79:589–620

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correale J et al (2017) Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140(3):527–546

PubMed  Google Scholar 

Daglas M et al (2022) Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury. Br J Pharmacol. https://doi.org/10.1111/bph.15950

Dehghan S et al (2012) Basic fibroblast growth factor potentiates myelin repair following induction of experimental demyelination in adult mouse optic chiasm and nerves. J Mol Neurosci 48(1):77–85

Article  CAS  PubMed  Google Scholar 

Dehghan S et al (2016) Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 318:178–189

Article  CAS  PubMed  Google Scholar 

Dehghan S et al (2021) An optimized animal model of lysolecithin induced demyelination in optic nerve; more feasible, more reproducible, promising for studying the progressive forms of multiple sclerosis. J Neurosci Methods 352:109088

Article  CAS  PubMed  Google Scholar 

Devos D et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dexter DT et al (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm 118(2):223–231

Article  CAS  PubMed  Google Scholar 

Fawzi SF, Menze ET, Tadros MG (2020) Deferiprone ameliorates memory impairment in scopolamine-treated rats: the impact of its iron-chelating effect on β-amyloid disposition. Behav Brain Res 378:112314

Article  CAS  PubMed  Google Scholar 

Franklin RJ (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

Article  CAS  PubMed  Google Scholar 

Franklin RJ (2017) Regenerating CNS myelin—from mechanisms to experimental medicines. Nat Rev Neurosci 18(12):753–769

Article  CAS  PubMed  Google Scholar 

Grolez G et al (2015) Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol 15(1):1–6

Article  CAS  Google Scholar 

Gruchot J et al (2019) The molecular basis for remyelination failure in multiple sclerosis. Cells 8(8):825

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadziahmetovic M et al (2011) The oral iron chelator deferiprone protects against iron overload–induced retinal degeneration. Invest Ophthalmol vis Sci 52(2):959–968

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadziahmetovic M et al (2012) The oral iron chelator deferiprone protects against retinal degeneration induced through diverse mechanisms. Transl Vis Sci Technol 1(3):2–2

Article  PubMed  PubMed Central  Google Scholar 

Holley J et al (2003) Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol Appl Neurobiol 29(5):434–444

Article  CAS  PubMed  Google Scholar 

Irvine K, Blakemore W (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(6):1464–1477

Article  CAS  PubMed  Google Scholar 

Klopstock T et al (2019) Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. The Lancet Neurology 18(7):631–642

Article  CAS  PubMed  Google Scholar 

Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology 14(2):183–193

Article  CAS  PubMed  Google Scholar 

Martin-Bastida A et al (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7(1):1–9

Article  CAS  Google Scholar 

Mesentier-Louro LA et al (2019) Direct targeting of the mouse optic nerve for therapeutic delivery. J Neurosci Methods 313:1–5

Article  CAS  PubMed  Google Scholar 

Metz G, Schwab M (2004) Behavioral characterization in a comprehensive mouse test battery reveals motor and sensory impairments in growth-associated protein-43 null mutant mice. Neuroscience 129(3):563–574

Article  CAS  PubMed  Google Scholar 

Mitchell K et al (2007) Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis. Mult Scler J 13(9):1118–1126

Article  CAS  Google Scholar 

Moreau C et al (2018) Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis? Mary Ann Liebert, Inc., New Rochelle

Niknam P et al (2019) Modulating proteoglycan receptor PTPσ using intracellular sigma peptide improves remyelination and functional recovery in mice with demyelinated optic chiasm. Mol Cell Neurosci 99:103391

Article  CAS  PubMed  Google Scholar 

Nobuta H et al (2019) Oligodendrocyte death in Pelizaeus-Merzbacher disease is rescued by iron chelation. Cell Stem Cell. 25(4):531–541. https://doi.org/10.1016/j.stem.2019.09.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 5th edn. Academic press

Pearson C (2018) A therapeutic link between astrogliosis and remyelination in a mouse model of multiple sclerosis. J Neurosci 38(1):29–31

Article  CAS  PubMed  PubMed Central  Google Scholar 

Philips T, Rothstein JD (2017) Oligodendroglia: metabolic supporters of neurons. J Clin Investig 127(9):3271–3280

Article  PubMed  PubMed Central  Google Scholar 

Pourabdolhossein F et al (2014) Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm. PLoS ONE 9(9):e106378

Article  PubMed  PubMed Central  Google Scholar 

Rayatpour A et al (2022) Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve. Sci Rep 12(1):19630

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif