Synthesis, structure-activity relationship and evaluation of antifungal activity of tryptanthrin derivatives against drug-resistant Candida albicans

Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem. 2021;221:113557 https://doi.org/10.1016/j.ejmech.2021.113557

Article  CAS  PubMed  Google Scholar 

Heintz-Buschart A, Eickhoff H, Hohn E, Bilitewski U. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. J Biotechnol. 2013;164:137–42. https://doi.org/10.1016/j.jbiotec.2012.12.004

Article  CAS  PubMed  Google Scholar 

Zuo R, Garrison AT, Basak A, et al. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents. 2016;48:208–11. https://doi.org/10.1016/j.ijantimicag.2016.04.019

Article  CAS  PubMed  Google Scholar 

Lignell A, Löwdin E, Cars O, Sanglard D, Sjölin J. Voriconazole-induced inhibition of the fungicidal activity of amphotericin B in Candida strains with reduced susceptibility to voriconazole: an effect not predicted by the MIC value alone. Antimicrob Agents Chemother. 2011;55:1629–37. https://doi.org/10.1128/aac.00791-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benjamin I, Benson CU, Adalikwu SA, Nduoma FA, Akor FO, Odey MO, et al. Investigating the potential of thiazolyl carbohydrazides derivatives as anti-Candida albicans agents: an intuition from molecular modelling, pharmacokinetic evaluation, and molecular docking analysis. CHPHI. 2023;7:100275 https://doi.org/10.1016/j.chphi.2023.100275

Article  Google Scholar 

Zhang M, Yan H, Lu M, Wang D, Sun S. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence. Int J Antimicrob Agents. 2020;55:105804 https://doi.org/10.1016/j.ijantimicag.2019.09.008

Article  CAS  PubMed  Google Scholar 

Hill JA, Cowen LE. Using combination therapy to thwart drug resistance. Future Microbiol. 2015;10:1719–26. https://doi.org/10.2217/fmb.15.68

Article  CAS  PubMed  Google Scholar 

Sun W, Wang D, Yu C, Huang X, Li X, Sun S. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence. Int J Antimicrob Agents. 2017;50:399–405. https://doi.org/10.1016/j.ijantimicag.2017.03.015

Article  CAS  PubMed  Google Scholar 

Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents. 2014;43:395–402. https://doi.org/10.1016/j.ijantimicag.2013.12.009

Article  CAS  PubMed  Google Scholar 

Huang LQ, Dong CL, He YH, Guan Z. Visible light‐induced radical‐radical coupling: one‐pot synthesis of 6‐Benzyl‐6‐hydroxyindolo [2, 1‐b] quinazolin‐12 (6H)‐ones from Isatins and Potassium Benzyl Trifluoroborates. Adv Synth Catal. 2022;364:3225–37. https://doi.org/10.1002/adsc.202200750

Article  CAS  Google Scholar 

Deryabin PI, Moskovkina TV, Shevchenko LS, Kalinovskii AI. Synthesis and antimicrobial activity of tryptanthrin adducts with ketones. Russ J Org Chem. 2017;53:418–22. https://doi.org/10.1134/S1070428017030174

Article  CAS  Google Scholar 

Beyrati M, Forutan M, Hasaninejad A, Rakovský E, Babaei S, Maryamabadi A, et al. One-pot, four-component synthesis of spiroindoloquinazoline derivatives as phospholipase inhibitors. Tetrahedron. 2017;73:5144–52. https://doi.org/10.1016/j.tet.2017.07.005

Article  CAS  Google Scholar 

Kamal A, Reddy BV, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, et al. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorganic Med Chem Lett. 2015;25:3867–72. https://doi.org/10.1016/j.bmcl.2015.07.057

Article  CAS  Google Scholar 

Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorganic Med Chem. 2017;25:4533–52. https://doi.org/10.1016/j.bmc.2017.07.003

Article  CAS  Google Scholar 

Brandao P, Burke AJ. Tryptanthrin and its derivatives in drug discovery: synthetic insights. Synthesis. 2022;54:4235–45. https://doi.org/10.1055/s-0040-1719901

Article  CAS  Google Scholar 

Moskovkina TV, Kalinovskii AI, Martyyas EA, Anisimov MM. Synthesis and properties of 6, 6-di (indol-3-yl)-indolo [2, 1-b] quinazolin-12 (6 H)-one and its 2, 8-dimethyl and 2, 8-dibromo derivatives. Chem Heterocycl Compd. 2013;49:452–6. https://doi.org/10.1007/s10593-013-1267-4

Article  CAS  Google Scholar 

Amara R, Awad H, Chaker D, et al. Conversion of isatins to tryptanthrins, heterocycles endowed with a myriad of bioactivities. Eur J Org Chem. 2019;2019:5302–12. https://doi.org/10.1002/ejoc.201900352

Article  CAS  Google Scholar 

Qin TH, Liu JC, Zhang JY, Tang LX, Ma YN, Yang R. Synthesis and biological evaluation of new 2-substituted-4-amino-quinolines and-quinazoline as potential antifungal agents. Bioorganic Med Chem Lett. 2022;72:128877 https://doi.org/10.1016/j.bmcl.2022.128877

Article  CAS  Google Scholar 

Setiawan A, Widodo ADW, Endraswari PD. Comparison of ciprofloxacin, cotrimoxazole, and doxycycline on Klebsiella pneumoniae: time-kill curve analysis. Ann Med Surg. 2022;84:104841 https://doi.org/10.1016/j.amsu.2022.104841

Article  Google Scholar 

Yang S, Peng X, Ren B, Luo Y, Xu X. Small molecule II-6s synergises with fluconazole against Candida albicans. Int J Antimicrob Agents. 2023;62:106820 https://doi.org/10.1016/j.ijantimicag.2023.106820

Article  CAS  PubMed  Google Scholar 

Money NP. Action and inertia in the study of hyphal growth. Fungal Biol Rev. 2022;41:24–30. https://doi.org/10.1016/j.fbr.2021.09.001

Article  CAS  Google Scholar 

De Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JC, Junqueira JC. Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia. 2020;185:415–24. https://doi.org/10.1007/s11046-020-00445-w

Article  PubMed  Google Scholar 

Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012;3:315–22. https://doi.org/10.4161/trns.22281

Article  PubMed  PubMed Central  Google Scholar 

Shin DS, Eom YB. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can J Microbiol. 2019;65:713–21. https://doi.org/10.1139/cjm-2019-0155

Article  CAS  PubMed  Google Scholar 

Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, et al. C. albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents. 2022;60:106673 https://doi.org/10.1016/j.ijantimicag.2022.106673

Article  CAS  PubMed  Google Scholar 

Arockiaraj M, Singh G, Sree Marupalli S, Rajeshkumar V. Visible‐light‐induced aerobic intramolecular Cyclization of (2‐Aminophenyl)(1H‐indol‐1‐yl) methanones: direct access to bioactive Tryptanthrin and its derivatives. Adv Synth and Catal. 2023;365:1654–9. https://doi.org/10.1002/adsc.202300195

Article  CAS  Google Scholar 

Bai Xiao. Structural modification of natural product trypanthrin and its inhibitory effect on tumor cell proliferation[D]. Northwestern University. 2021.

Moskovkina TV, Kalinovskii AI, Makhan’kov VV. Synthesis of tryptanthrin (couroupitine) derivatives by reaction of substituted isatins with phosphoryl chloride. Russ J Org Chem. 2012;48:123–6. https://doi.org/10.1134/S1070428012010204

Article  CAS  Google Scholar 

Chen L, Liu W, Wang Y, et al. Highly efficient metal-free synthesis and antibacterial activities of tryptanthrin derivatives. Synthetic Chem. 2022;30:917–24.

Google Scholar 

Wang C, Zhang L, Ren A, Lu P, Wang Y. Cu-catalyzed synthesis of tryptanthrin derivatives from substituted indoles. Org lett. 2013;15:2982–5. https://doi.org/10.1021/ol401144m

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif