Synthesis, in vitro activity, and molecular docking of caffeic acid and resveratrol derivatives against Alzheimer’s disease-related enzymes

Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the read to therapeutics. Science. 2002;297:353–6.

Article  CAS  PubMed  Google Scholar 

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

Article  CAS  PubMed  Google Scholar 

Hardy JA, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.

Article  CAS  PubMed  Google Scholar 

Tanzy RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

Article  Google Scholar 

Tougu V, Tiiman A, Palumaa P. Interactions of Zn(II) and Cu(II) ions with Alzheimer’s disease amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics. 2011;3:250–61.

Article  CAS  PubMed  Google Scholar 

Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Younkin SG. The role of A beta 42 in Alzheimer’s disease. J Physiol. 1998;92:289–92.

CAS  Google Scholar 

Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, et al. Elevated β secretase expression and enzymatic activity detected in sporadic Alzheimer’s disease. Nat Med. 2003;9:3–4.

Article  CAS  PubMed  Google Scholar 

Wen Y, Onyewichi O, Yang S, Liu R, Simpkins JW. Increased β-secretase activity and expression in rats following transient cerebral ischemia. Brain Res. 2004;1009:1–8.

Article  CAS  PubMed  Google Scholar 

Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10:279–88.

Article  CAS  PubMed  Google Scholar 

Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, et al. Hypoxia-inducible factor 1a (HIF-1a)-mediated hypoxia increases BACE 1 expression and β-amyloid generation. J Biol Chem. 2007;282:10873–80.

Article  CAS  PubMed  Google Scholar 

Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M. BACE 1 in Alzheimer’s disease. Clin Chim Acta. 2012;414:171–8.

Article  CAS  PubMed  Google Scholar 

Vassar R. BACE 1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzeimers Res Ther. 2014;6:89a.

Article  Google Scholar 

A Safety Study of LY2811376 Single Doses in Healthy Subjects. https://clinicaltrials.gov/ct2/show/NCT00838084 (Accessed 15 July 2024).

Efficacy and Safety Trial of Verubecestat (MK-8931) in Participants With Prodromal Alzheimer's Disease (MK-8931-019). 2019. (APECS). https://clinicaltrials.gov/ct2/show/NCT01953601 (Accessed 15 July 2024).

An Efficacy and Safety Study of Lanabecestat (LY3314814) in Early Alzheimer’s Disease (AMARANTH). 2019. https://clinicaltrials.gov/ct2/show/NCT02245737 (Accessed 15 July 2024).

Martorana A, Esposito Z, Koch G. Beyond the cholinergic hypothesis: Do current drugs work in Alzheimer’s disease? CNS Neurosci Ther. 2010;16:235–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer’s disease. J Cell Mol Med. 2009;13:61–86.

Article  CAS  PubMed  Google Scholar 

Carpinella MC, Andrione DG, Ruiz G, Palacios SM. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytother Res. 2010;24:259–63.

Article  PubMed  Google Scholar 

Rodda J, Carter J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ. 2012;344:e2986.

Article  PubMed  Google Scholar 

Fernandez-Mar MI, Mateos R, Garcia-Parrilla MC, Puertas B, Cantos-Villar E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: a review. Food Chem. 2012;130:797–813.

Article  CAS  Google Scholar 

Hung VWS, Cheng XR, Li N, Veloso J, Kerman K. Electrochemical detection of amyloid-beta aggregation in presence of resveratrol. J Electrochem Soc. 2013;160:G3097.

Article  CAS  Google Scholar 

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.

Article  CAS  PubMed  Google Scholar 

Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, Ohhashi Y, Ookoshi T, Ono K, et al. The anti-amyloidogenic effect is exerted against Alzheimer’s b-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry. 2007;46:1888–99.

Article  CAS  PubMed  Google Scholar 

Leonard SS, Xia C, Jiang CX, Stinefelt B, Klandorf H, Harris GK, Shi X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Com. 2003;309:1017–26.

Article  CAS  PubMed  Google Scholar 

Oboh G, Rocha JBT. Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). J Food Biochem. 2007;31:456–73.

Article  CAS  Google Scholar 

Clifford MN. Chlorogenic acids and other cinnamatessnature, occurrence and dietary burden. J Sci Food Agric. 1999;79:362–72.

Article  CAS  Google Scholar 

Olthof MR, Hollman PCH, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr. 2001;131:66–71.

Article  CAS  PubMed  Google Scholar 

Resveratrol for Alzheimer's Disease. 2016. https://clinicaltrials.gov/ct2/show/NCT01504854 (Accessed 15 July 2024).

Kung HF, Choi SR, Qu W, Zhang W, Skovronsky D. 18F stilbenes and styrylpyridines for PET imaging of a beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem. 2010;53:933–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vladimir-Knezevic S, Blazekovic B, Kindl M, Vladic J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the lamiaceae family. Molecules. 2014;19:767–82.

Article  PubMed  PubMed Central  Google Scholar 

Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzhemimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res. 2013;38:413–9.

Article  CAS  PubMed  Google Scholar 

Naushad M, Durairajan SSK, Bera AK, Senapati S, Li M. Natural compounds with anit-BACE 1 activity as promising therapeutic drugs for treating Alzheimer’s disease. Planta Med. 2019;85:1316–25.

Article  CAS  PubMed  Google Scholar 

Martinez A, Alcendor R, Rahman T, Podgorny M, Sanogo I, McCurdy R. Ionophoric polyphenols selectively bind Cu2 + , display potent antioxidant and anti-amyloidogenic properties, and are non-toxic toward Tetrahymena thermophila. Bioorg Med Chem. 2016;24:3657–70.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif