Identification of potential natural product derivatives as CK2 inhibitors based on GA-MLR QSAR modeling, synthesis and biological evaluation

Chopra B, Dhingra AK. Natural products: a lead for drug discovery and development. Phytother Res. 2021;35:4660–702. https://doi.org/10.1002/ptr.7099.

Article  PubMed  Google Scholar 

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of targeting CK2 in drug discovery: challenges, opportunities, and emerging prospects. J Med Chem. 2023;66:2257–81. https://doi.org/10.1021/acs.jmedchem.2c01523.

Article  CAS  PubMed  Google Scholar 

Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G, et al. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships. J Med Chem. 2008;51:752–9. https://doi.org/10.1021/jm070909t.

Article  CAS  PubMed  Google Scholar 

Zhang N, Chen WJ, Zhou Y, Zhao H, Zhong RG. Rational design of coumarin derivatives as CK2 inhibitors by improving the interaction with the hinge region. Mol Inform. 2016;35:15–18. https://doi.org/10.1002/minf.201500091.

Article  CAS  PubMed  Google Scholar 

McCarty MF, Assanga SI, Lujan LL. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses. 2020;141:109723. https://doi.org/10.1016/j.mehy.2020.109723.

Article  CAS  PubMed  Google Scholar 

Golub AG, Bdzhola VG, Kyshenia YV, Sapelkin VM, Prykhod’ko AO, Kukharenko OP, et al. Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem. 2011;356:107–15. https://doi.org/10.1007/s11010-011-0945-8.

Article  CAS  PubMed  Google Scholar 

Golub AG, Bdzhola VG, Ostrynska OV, Kyshenia IV, Sapelkin VM, Prykhod’ko AO, et al. Discovery and characterization of synthetic 4’-hydroxyflavones-New CK2 inhibitors from flavone family. Bioorg Med Chem. 2013;21:6681–9. https://doi.org/10.1016/j.bmc.2013.08.013.

Article  CAS  PubMed  Google Scholar 

Yim H, Lee YH, Lee CH, Lee SK. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999;65:9–13. https://doi.org/10.1055/s-1999-13953.

Article  CAS  PubMed  Google Scholar 

Sekiguchi Y, Nakaniwa T, Kinoshita T, Nakanishi I, Kitaura K, Hirasawa A, et al. Structural insight into human CK2 alpha in complex with the potent inhibitor ellagic acid. Bioorg Med Chem Lett. 2009;19:2920–3. https://doi.org/10.1055/s-1999-13953.

Article  CAS  PubMed  Google Scholar 

Cozza G, Zonta F, Dalle Vedove A, Venerando A, Dall’Acqua S, Battistutta R, et al. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin. FEBS J. 2020;287:1850–64. https://doi.org/10.1111/febs.15111.

Article  CAS  PubMed  Google Scholar 

Qi X, Zhang N, Zhao L, Hu L, Cortopassi WA, Jacobson MP, et al. Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents. Biochem Biophys Res Commun. 2019;512:208–12. https://doi.org/10.1016/j.bbrc.2019.03.016.

Article  CAS  PubMed  Google Scholar 

Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci. 2022;13:1526–46. https://doi.org/10.1039/d1sc04471k.

Article  CAS  PubMed  Google Scholar 

Zhang N, Zhong R. Docking and 3D-QSAR studies of 7-hydroxycoumarin derivatives as CK2 inhibitors. Eur J Med Chem. 2010;45:292–7. https://doi.org/10.1016/j.ejmech.2009.10.011.

Article  CAS  PubMed  Google Scholar 

Haidar S, Marminon C, Aichele D, Nacereddine A, Zeinyeh W, Bouzina A, et al. QSAR model of indeno[1,2-b]indole derivatives and identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3-b]furan-3-carboxamide as a potent CK2 inhibitor. Molecules. 2019;25. https://doi.org/10.3390/molecules25010097.

Zhong S, Lambeth DR, Igou TK, Chen Y. Enlarging applicability domain of quantitative structure–activity relationship models through uncertainty-based active learning. ACS EST Engg. 2022;2:1211–20. https://doi.org/10.1021/acsestengg.1c00434.

Article  CAS  Google Scholar 

Sadeghi F, Afkhami A, Madrakian T, Ghavami R. QSAR analysis on a large and diverse set of potent phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using MLR and ANN methods. Sci Rep. 2022;12:6090. https://doi.org/10.1038/s41598-022-09843-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Bi M, Zhang X, Zhang N, Sun G, Zhou Y, et al. Machine learning models for the classification of CK2 natural products inhibitors with molecular fingerprint descriptors. Processes. 2021. https://doi.org/10.3390/pr9112074.

Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012;52:396–408. https://doi.org/10.1021/ci200520g.

Article  CAS  PubMed  Google Scholar 

Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, et al. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem. 2011;54:635–54. https://doi.org/10.1021/jm101251q.

Article  CAS  PubMed  Google Scholar 

Sarno S, Papinutto E, Franchin C, Bain J, Elliott M, Meggio F, et al. ATP site-directed inhibitors of protein kinase CK2: an update. Curr Top Med Chem. 2011;11:1340–51. https://doi.org/10.2174/156802611795589638.

Article  CAS  PubMed  Google Scholar 

Eslam P, Reza A, Mohammad R. Q SAR study of CK2 inhibitors by GA-MLR and GA-SVM methods. Arab J Chem. 2019;12:2141–9. https://doi.org/10.1016/j.arabjc.2014.12.021.

Article  CAS  Google Scholar 

Amina G, Abdellah E, Hicham E, Abdelkrim O. QSAR modeling, molecular docking studies and ADMET prediction on a series of phenylaminopyrimidine-(thio) urea derivatives as CK2 inhibitors. Mater Today Proc. 2022;51:1851–62. https://doi.org/10.1016/j.matpr.2020.08.044.

Article  CAS  Google Scholar 

Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34:2121–32. https://doi.org/10.1002/jcc.23361.

Article  CAS  Google Scholar 

Gramatica P, Cassani S, Chirico N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem. 2014;35:1036–44. https://doi.org/10.1002/jcc.23576.

Article  CAS  PubMed  Google Scholar 

Gramatica P. Principles of QSAR modeling: comments and suggestions from personal experience. IJQSPR. 2020;5. https://doi.org/10.4018/IJQSPR.20200701.oa1.

Todeschini R, Consonni V, Maiocchi A. The K correlation index: theory development and its application in chemometrics. Chemom Intell. 1999;46:13–29. https://doi.org/10.1016/S0169-7439(98)00124-5.

Article  CAS  Google Scholar 

Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20:69–276. https://doi.org/10.1016/s1093-3263(01)00123-1.

Article  Google Scholar 

Hao Y, Sun G, Fan T, Sun X, Liu Y, Zhang N, et al. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods. Ecotoxicol Environ Saf. 2019;186:109822. https://doi.org/10.1016/j.ecoenv.2019.109822.

Article  CAS  PubMed  Google Scholar 

Roy K, Ambure P, Kar S. How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? ACS Omega. 2018;3:11392–406. https://doi.org/10.1021/acsomega.8b01647.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif