Iron porphyrin-mediated production of carbon monoxide from phenylpyruvic acid: from potential therapeutic and diagnostic use to physiological implications

SjÖStrand T. Endogenous Formation of Carbon Monoxide in Man. Nature. 1949;164:580–1. https://doi.org/10.1038/164580a0.

Article  PubMed  Google Scholar 

Wang B, Otterbein LE. Carbon monoxide in drug discovery: basics, pharmacology, and therapeutic potential. Hoboken, NJ. John Wiley & Sons; 2022.

Archakov AI, Karuzina II, Petushkova NA, Lisitsa AV, Zgoda VG. Production of carbon monoxide by cytochrome P450 during iron-dependent lipid peroxidation. Toxicol Vitr. 2002;16:1–10. https://doi.org/10.1016/s0887-2333(01)00094-7.

Article  CAS  Google Scholar 

De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, et al. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci. 2021;12:10649–54. https://doi.org/10.1039/d1sc02711e.

Article  CAS  PubMed  Google Scholar 

Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, et al. Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction. Angew Chem Int Ed Engl. 2016;55:15846–51. https://doi.org/10.1002/anie.201608732.

Article  CAS  PubMed  Google Scholar 

Matson JB, Webber MJ, Tamboli VK, Weber B, Stupp SI. A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter. 2012;8:6689–92. https://doi.org/10.1039/C2SM25785H.

Article  CAS  Google Scholar 

Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C, et al. Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties. R Soc Open Sci. 2021;8:211022. https://doi.org/10.1098/rsos.211022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43. https://doi.org/10.1038/nrd3228.

Article  CAS  PubMed  Google Scholar 

Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharm. 2023;214:115642. https://doi.org/10.1016/j.bcp.2023.115642.

Article  CAS  PubMed  Google Scholar 

Yuan Z, Yang X, Wang B. Redox and catalase-like activities of four widely used carbon monoxide releasing molecules (CO-RMs). Chem Sci. 2021;12:13013–20. https://doi.org/10.1039/D1SC03832J.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev. 2020;120:13135–272. https://doi.org/10.1021/acs.chemrev.0c00663.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarus LS, Dederich CT, Anderson SN, Benninghoff AD, Berreau LM. Flavonol-Based Carbon Monoxide Delivery Molecule with Endoplasmic Reticulum, Mitochondria, And Lysosome Localization. ACS Med Chem Lett. 2022;13:236–42. https://doi.org/10.1021/acsmedchemlett.1c00595.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, et al. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med. 2022;14:eabl4135. https://doi.org/10.1126/scitranslmed.abl4135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao Q, Kawaguchi AT, Mizobata S, Motterlini R, Foresti R, Kitagishi H. Sensitive quantification of carbon monoxide in vivo reveals a protective role of circulating hemoglobin in CO intoxication. Commun Biol. 2021;4:425. https://doi.org/10.1038/s42003-021-01880-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell NT, Payne CM, Sammut IA, Larsen DS. Mechanistic Studies of Carbon Monoxide Release from Norborn-2-en-7-one CORMs. Asian J Org Chem. 2022;11:e202200350. https://doi.org/10.1002/ajoc.202200350.

Article  CAS  Google Scholar 

Min Q, Ni Z, You M, Liu M, Zhou Z, Ke H, et al. Chemiexcitation-Triggered Prodrug Activation for Targeted Carbon Monoxide Delivery. Angew Chem Int Ed. 2022;61:e202200974. https://doi.org/10.1002/anie.202200974.

Article  CAS  Google Scholar 

Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, et al. Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomolecular Chem. 2013;11:6671–4. https://doi.org/10.1039/C3OB41385C.

Article  CAS  Google Scholar 

Cheng J, Zheng B, Cheng S, Zhang G, Hu J. Metal-free carbon monoxide-releasing micelles undergo tandem photochemical reactions for cutaneous wound healing. Chem Sci. 2020;11:4499–507. https://doi.org/10.1039/D0SC00135J.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Medicinal Chem. 2024;67:9789–815. https://doi.org/10.1021/acs.jmedchem.4c00823.

Article  CAS  Google Scholar 

Grigorescu BL, Săplăcan I, Bordea IR, Petrisor M, Coman O, Puiac CI et al. Endogenous Carboxyhemoglobin Level Variation in COVID-19 and Bacterial Sepsis: A Novel Approach? Microorganisms. 2022;10. https://doi.org/10.3390/microorganisms10020305.

Hino S, Tauchi H. Production of carbon monoxide from aromatic amino acids by Morganella morganii. Arch Microbiol. 1987;148:167–71. https://doi.org/10.1007/BF00414807.

Article  CAS  Google Scholar 

Jefford CW, Knoepfel W, Cadby PA. Oxygenation of 3-aryl-2-hydroxyacrylic acids. The question of linear fragmentation vs. cyclization and cleavage of intermediates. J Am Chem Soc. 1978;100:6432–6. https://doi.org/10.1021/ja00488a028.

Article  CAS  Google Scholar 

Yang X, Lu W, Wang M, Tan C, Wang B. “CO in a pill”: Towards oral delivery of carbon monoxide for therapeutic applications. J Control Rel. 2021;338:593–609. https://doi.org/10.1016/j.jconrel.2021.08.059.

Article  CAS  Google Scholar 

Dare NA, Egan TJ. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions. Open Chem. 2018;16:763–89. https://doi.org/10.1515/chem-2018-0083.

Article  CAS  Google Scholar 

Bedioui F. Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev. 1995;144:39–68. https://doi.org/10.1016/0010-8545(94)08000-H.

Article  CAS  Google Scholar 

Xue T, Jiang S, Qu Y, Su Q, Cheng R, Dubin S, et al. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew Chem Int Ed Engl. 2012;51:3822–5. https://doi.org/10.1002/anie.201108400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou HL, Li BL, Luo HQ, Li NB. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens Actuators B Chem. 2015;207:535–41. https://doi.org/10.1016/j.snb.2014.10.121.

Article  CAS  Google Scholar 

Yang X, Lu W, Wang M, De La Cruz LK, Tan C, Wang B. Activated charcoal dispersion of carbon monoxide prodrugs for oral delivery of CO in a pill. Int J Pharm. 2022;618:121650. https://doi.org/10.1016/j.ijpharm.2022.121650.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansuy D. Activation of alkanes : the biomimetic approach. Coord Chem Rev. 1993;125:129–41. https://doi.org/10.1016/0010-8545(93)85013-T.

Article  CAS  Google Scholar 

Selke M, Sisemore MF, Valentine JS. The Diverse Reactivity of Peroxy Ferric Porphyrin Complexes of Electron-Rich and Electron-Poor Porphyrins. J Am Chem Soc. 1996;118:2008–12. https://doi.org/10.1021/ja953694y.

Article  CAS 

留言 (0)

沒有登入
gif