Substituted furan-carboxamide and Schiff base derivatives as potential hypolipidemic compounds: evaluation in Triton WR-1339 hyperlipidemic rat model

Farnier M, Davignon J. Current and future treatment of hyperlipidemia: the role of statins. AJC. 1998;82:3J–10J.

Article  CAS  Google Scholar 

Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40:195–211.

Article  PubMed  Google Scholar 

Verma N. Introduction to hyperlipidemia and its treatment: a review. Int J Curr Pharm. 2016;9:6–14.

Article  Google Scholar 

Ghosal S, Sinha B. Secondary cvd prevention—lipid modification strategies: a critical analysis. Diabetes Metab J. 2017;11:S187–93.

Google Scholar 

Mahamuni SP, Khose RD, Menaa F, Badole SL. Therapeutic approaches to drug targets in hyperlipidemia. Biomedicine. 2012;2:137–46.

Article  Google Scholar 

Abu Khalaf R, Abu Sheikha G, Al-Sha’er M, Albadawi G, Taha M. Design, synthesis, and biological evaluation of sulfonic acid ester and benzenesulfonamide derivatives as potential CETP inhibitors. Med Chem Res. 2012;21:3669–80.

Article  CAS  Google Scholar 

Bhatnagar D. Lipid-lowering drugs in the management of hyperlipidaemia. Pharmacol Ther. 1998;79:205–30.

Article  CAS  PubMed  Google Scholar 

Jain KSKM, Somani RS, Shishoo CJ. The biology and chemistry of hyperlipidemia. Bioorg Med Chem. 2007;15:4674–99.

Article  CAS  PubMed  Google Scholar 

Katsiki NND, Montalto G, Banach M, Mikhailidis DP, Rizzo M. The role of fibrate treatment in dyslipidemia: an overview. Curr Pharm Des. 2013;19:3124–31.

Article  CAS  PubMed  Google Scholar 

Shipman KE, Strange RC, Ramachandran S. Use of fibrates in the metabolic syndrome: a review. WJD. 2016;7:74–88.

Article  PubMed  PubMed Central  Google Scholar 

Fazio SLM. The role of fibrates in managing hyperlipidemia: mechanisms of action and clinical efficacy. Curr Atheroscler Rep. 2004;6:148–57.

Article  PubMed  Google Scholar 

Shattat GF, Abusheika GM, AL-Qirim TM, Huwaitat R, EL-Hunneidi W, ABU Khalaf R, et al. Novel pyrrole derivatives as potent lipid-lowering agents in Triton-WR-1339-induced hyperlipidemic rats. Lat Am J Pharm. 2015;34:1258–64.

CAS  Google Scholar 

Abu Farha R, Bustanji Y, Al-Hiari Y, Al-Qirim T, Abu Shiekha G, Albashiti R. Lipid lowering activity of novel N-(benzoylphenyl) pyridine-3-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats. J Enzyme Inhib Med Chem. 2016;31:138–44.

Article  CAS  PubMed  Google Scholar 

Abu Farha R, Bustanji Y, Al-Hiari Y, Bardaweel S, Al-Qirim T, Abu Sheikha G, et al. Pharmacological evaluation of novel isonicotinic carboxamide derivatives as potential anti-hyperlipidemic and antioxidant agents. Arch Pharm. 2017;350:e1700024.

Article  Google Scholar 

Al-Jammal B, Hussein B, Al-Hiari Y, Al-Qirim T, Al-Najdawi M, Hamadneh L, et al. Synthesis of microwave-assisted carboxamides in Triton WR-1339-induced hyperlipidemic rats: possible hypolipidemic heterocyclic compounds. RSC Adv. 2023;13:22193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Najdawi M, Hiari Y, Qirim T, Shattat G, Al-Zweri M, Sheikha GA. Synthesis and pharmacological evaluation of novel unsubstituted indole-anthraquinone carboxamide derivatives as potent antihyperlipidemic agents. Z Naturforsch C. 2014;69:21–8.

Article  CAS  PubMed  Google Scholar 

Al-Qirim T, Shahwan M, Shattat G, Al-Hiari Y, Sheikha GA, Zaidi S. Pharmacological evaluation of novel indole-2-carboxamides as potent lipid-lowering agents in Triton-WR-1339-induced hyperlipidemic rats. Z Naturforsch C.2009;64:619–25.

Article  CAS  PubMed  Google Scholar 

Shattat G, Al-Qirim T, Sweidan K, Shahwan M, El-Huneidi W, Al-Hiari Y. The hypolipidemic activity of novel benzofuran-2-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats: a comparison with bezafibrate. J Enzyme Inhib Med Chem. 2010;25:751–5.

Article  CAS  PubMed  Google Scholar 

Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 2014;42:W26–31. https://doi.org/10.1093/nar/gku477.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida T, Oki H, Doi M, Fukuda S, Yuzuriha T, Tabata R, et al. Structural basis for PPARα activation by 1H-pyrazolo-[3,4-b]pyridine derivatives. Sci Rep. 2020;10:7623. https://doi.org/10.1038/s41598-020-64527-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamata S, Oyama T, Saito K, Honda A, Yamamoto Y, Suda K, et al. PPARalpha ligand-binding domain structures with endogenous fatty acids and fibrates. iScience. 2020;23:101727. https://doi.org/10.1016/j.isci.2020.101727.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramani PA, Panati K, Narala VR. Molecular docking of glyceroneogenesis pathway intermediates with peroxisome proliferator-activated receptor-alpha (PPAR-α). Bioinformation. 2013;9:629–32. https://doi.org/10.6026/97320630009629.

Article  PubMed  PubMed Central  Google Scholar 

Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of heterocyclic PPAR ligands for potential therapeutic applications. Pharmaceutics. 2022;14:2139.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nath V, Agrawal R, Kumar V. Structure based docking and molecular dynamics studies: peroxisome proliferator-activated receptors –α/γ dual agonists for treatment of metabolic disorders. J Biomol Struct Dyn. 2020;38:511–23. https://doi.org/10.1080/07391102.2019.1581089.

Article  CAS  PubMed  Google Scholar 

Montalbetti C, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005;61:10827–52.

Article  CAS  Google Scholar 

Hussein B, Bourghli LMS, Alzweiri M, Al-Hiari Y, Abu Sini M, Alnabulsi S, et al. Synthesis and biological evaluation of carbonic anhydrase III and IX inhibitors using gas chromatography with modified pH sensitive pellets. JJPS. 2023;16:426–39.

Article  Google Scholar 

Harnafi H, Caid HS, Bouanani N, Aziz M, Amrani S. Hypolipemic activity of polyphenol-rich extracts from Ocimum basilicum in Triton WR-1339-induced hyperlipidemic mice. Food Chem. 2008;108:205–12.

Article  CAS  Google Scholar 

Nakajima T, Tanaka N, Kanbe H, Hara A, Kamijo Y, Zhang X, et al. Bezafibrate at clinically relevant doses decreases serum/liver triglycerides via down-regulation of sterol regulatory element-binding protein-1c in mice: a novel peroxisome proliferator-activated receptor alpha-independent mechanism. Mol Pharmacol. 2009;75:782–92. https://doi.org/10.1124/mol.108.052928.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hikmat S, Al-qirim T, Alkabbani D, Shattat G, Sheikha GA, Sabbah D, et al. Synthesis and in vivo anti-hyperlipidemic activity of novel n-benzoylphenyl-2-furamide derivatives in Wistar rats. TJPR. 2017;16:193–201.

CAS  Google Scholar 

Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. JACS. 2002;99:8127–34. https://doi.org/10.1021/ja00467a001.

Article  Google Scholar 

Dassault-Systèmes. Biovia, discovery studio modeling environment. 16.1 ed. San Diego, CA, USA: Dassault Systèmes Biovia; 2016.

Saqallah FG, Hamed WM, Talib WH, Dianita R, Wahab HA. Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (snapdragon) aerial parts. Heliyon. 2022;8:e10391. https://doi.org/10.1016/j.heliyon.2022.e10391.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif