ATP-hydrolyzing, DNA-damaging and cytotoxic activities of peptide-targeted cobalt(III) complex with diethylentriamine

Turel I. Special issue: practical applications of metal complexes. Molecules. 2015;20:7951–6. https://doi.org/10.3390/molecules20057951

Article  PubMed  PubMed Central  CAS  Google Scholar 

Karges J, Stokes RW, Cohen SM. Metal complexes for therapeutic applications. Trends Chem. 2021;3:523–34. https://doi.org/10.1016/j.trechm.2021.03.006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tesauro D. Metal complexes in diagnosis and therapy. Int J Mol Sci. 2022;23:4377. https://doi.org/10.3390/ijms23084377

Article  PubMed  PubMed Central  Google Scholar 

Li X, Wang Y, Li M, Wang H, Dong X. Metal complexes or chelators with ROS regulation capacity: Promising candidates for cancer treatment. Molecules. 2022;27:148. https://doi.org/10.3390/molecules27010148

Article  CAS  Google Scholar 

Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent advances of platinum-based anticancer complexes in combinational multimodal therapy. Adv Healthcare Mater. 2023;12:2300253 https://doi.org/10.1002/adhm.202300253

Article  CAS  Google Scholar 

Karati D, Mahadik KR, Trivedi P, Kumar D. Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer Agents Med Chem. 2021;22:1478–95. https://doi.org/10.2174/1871520621666210811105344

Article  CAS  Google Scholar 

Munteanu CR, Suntharalingam K. Advances in cobalt complexes as anticancer agents. Dalt Trans. 2015;44:13796–808. https://doi.org/10.1039/c5dt02101d

Article  CAS  Google Scholar 

Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron. 2022;222:115890. https://doi.org/10.1016/j.poly.2022.115890

Article  CAS  Google Scholar 

King AP, Gellineau HA, Ahn JE, MacMillan SN, Wilson JJ. Bis(thiosemicarbazone) complexes of cobalt(III). Synthesis, characterization, and anticancer potential. Inorg Chem. 2017;56:6609–23. https://doi.org/10.1021/acs.inorgchem.7b00710

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ambika S, Manojkumar Y, Arunachalam S, Gowdhami B, Meenakshi Sundaram KK, Solomon RV, et al. Biomolecular interaction, anti-cancer and anti-angiogenic properties of cobalt(III) Schiff base complexes. Sci Rep. 2019;9:1–14. https://doi.org/10.1038/s41598-019-39179-1

Article  CAS  Google Scholar 

Icsel C, Yilmaz VT, Aydinlik Ş, Aygun M. New manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) saccharinate complexes of 2,6-bis(2-benzimidazolyl)pyridine as potential anticancer agents. Eur J Med Chem. 2020;202:112535 https://doi.org/10.1016/j.ejmech.2020.112535

Article  PubMed  CAS  Google Scholar 

Alkış ME, Keleştemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and ruthenium complexes with pyrimidine based schiff base: synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J Mol Struct. 2021;1226:129402 https://doi.org/10.1016/j.molstruc.2020.129402

Article  CAS  Google Scholar 

Zhang HR, Meng T, Liu YC, Chen ZF, Liu YN, Liang H. Synthesis, characterization and biological evaluation of a cobalt(II) complex with 5-chloro-8-hydroxyquinoline as anticancer agent. Appl Organomet Chem. 2016;30:740–7. https://doi.org/10.1002/aoc.3498

Article  CAS  Google Scholar 

Sobiesiak M, Cieślak M, Królewska K, Kaźmierczak-Barańska J, Pasternak B, Budzisz E Thiosemicarbazone-derived copper(II), cobalt(II) and nickel(II) complexes as potential anticancer agents nuclease activity, cytotoxicity and apoptosis studies enhanced reader. New J Chem. 2016;9761–7. https://doi.org/10.1039/C6NJ02899C.

Yılmaz Ü, Tekin S, Buğday N, Yavuz K, Küçükbay H, Sandal S. Synthesis and evaluation of anticancer properties of novel benzimidazole ligand and their cobalt(II) and zinc(II) complexes against cancer cell lines A-2780 and DU-145. Inorganica Chim Acta. 2019;495:118977 https://doi.org/10.1016/j.ica.2019.118977

Article  CAS  Google Scholar 

Naqi Ahamad M, Iman K, Raza MK, Kumar M, Ansari A, Ahmad M, et al. Anticancer properties, apoptosis, and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg Chem. 2020;95:103561 https://doi.org/10.1016/j.bioorg.2019.103561

Article  PubMed  CAS  Google Scholar 

Ruiz-Sánchez P, König C, Ferrari S, Alberto R. Vitamin B12 as a carrier for targeted platinum delivery: in vitro cytotoxicity and mechanistic studies. J Biol Inorg Chem. 2011;16:33–44. https://doi.org/10.1007/s00775-010-0697-z

Article  PubMed  CAS  Google Scholar 

Colofiore JR, Stolfi RL, Dee Nord L, Martin DS. Biochemical modulation of tumor cell energy IV: evidence for the contribution of adenosine triphosphate (ATP) depletion to chemotherapeutically-induced tumor regression. Biochem Pharmacol. 1995;50:1943–8. https://doi.org/10.1016/0006-2952(95)02094-2

Article  PubMed  CAS  Google Scholar 

Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP production fuels cancer drug resistance and metastasis: implications for mitochondrial atp depletion therapy. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.740720

Nath K, Nelson DS, Heitjan DF, Leeper DB, Zhou R, Glickson JD. Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. NMR Biomed. 2015;28:281–90. https://doi.org/10.1002/nbm.3240

Article  PubMed  CAS  Google Scholar 

Hediger M, Milburn RM. Adenosine triphosphate (ATP) hydrolysis promoted by cobalt(III). Participation of polynuclear metal complexes. J Inorg Biochem. 1982;16:165–82. https://doi.org/10.1016/S0162-0134(00)80105-1

Article  PubMed  CAS  Google Scholar 

Suzuki S, Higashiyama T, Nakahara A. Nonenzymatic hydrolysis reactions of adenosine 5′-triphosphate and its related compounds-III: catalytic aspects of some cobalt(III) complexes in ATP-hydrolysis. Bioinorg Chem. 1978;8:277–89. https://doi.org/10.1016/S0006-3061(00)80162-3

Article  PubMed  CAS  Google Scholar 

Zoughaib M, Pavlov RV, Gaynanova GA, Garifullin R, Evtugyn VG, Abdullin TI. Amphiphilic RGD and GHK peptides synergistically enhance liposomal delivery into cancer and endothelial cells. Mater Adv. 2021;2:7715–30. https://doi.org/10.1039/d1ma00498k

Article  CAS  Google Scholar 

Ndinguri MW, Fronczek FR, Marzilli PA, Crowe WE, Hammer RP, Marzilli LG. Exploring water-soluble Pt(II) complexes of diethylenetriamine derivatives functionalized at the central nitrogen. Synthesis, characterization, and reaction with 5′-GMP. Inorganica Chim Acta. 2010;363:1796–804. https://doi.org/10.1016/j.ica.2010.02.027

Article  CAS  Google Scholar 

Bartolommei G, Moncelli MR, Tadini-Buoninsegni F. A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases). PLoS One. 2013;8:0058615 https://doi.org/10.1371/journal.pone

Article  CAS  Google Scholar 

Wang L, Yuan L, Zeng X, Peng J, Ni Y, Er JC, et al. A Multisite-binding switchable fluorescent probe for monitoring mitochondrial ATP level fluctuation in live cells. Angew Chem Int Ed. 2016;55:1773–6. https://doi.org/10.1002/anie.201510003

Article  CAS  Google Scholar 

Yılmaz Ü, Apohan E, Küçükbay H, Yılmaz Ö, Tatlıcı E, Yeşilada Ö. Synthesis a group of 5(6)-substituted benzimidazole Zn(II) and Co(II) complexes and investigation their cytotoxic and antimicrobial activities. J Heterocycl Chem. 2022;59:1241–6. https://doi.org/10.1002/jhet.4463

Article  CAS  Google Scholar 

Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, et al. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem. 2020;203. https://doi.org/10.1016/j.jinorgbio.2019.110907

Hopff SM, Onambele LA, Brandenburg M, Berkessel A, Prokop A. Discovery of a cobalt (III) salen complex that induces apoptosis in Burkitt like lymphoma and leukemia cells, overcoming multidrug resistance in vitro. Bioorg Chem. 2020;104. https://doi.org/10.1016/j.bioorg.2020.104193

Gowdhami B, Manojkumar Y, Vimala RTV, Ramya V, Karthiyayini B, Kadalmani B, et al. Cytotoxic cobalt (III) Schiff base complexes: in vitro anti-proliferative, oxidative stress and gene expression studies in human breast and lung cancer cells. BioMetals. 2022;35:67–85. https://doi.org/10.1007/s10534-021-00351-8

Article  PubMed  CAS  Google Scholar 

Verma PK, Singh RK, Kumar S, Shukla A, Kumar S, Gond MK, et al. Cobalt (III) complex exerts anti-cancer effects on T cell lymphoma through induction of cell cycle arrest and promotion of apoptosis. DARU J Pharm Sci. 2022;30:127–38. https://doi.org/10.1007/s40199-022-00439-7

Article  CAS  Google Scholar 

Ishkaeva RA, Zoughaib M, Laikov AV, Angelova PR, Abdullin TI. Probing cell redox state and glutathione-modulating factors using a monochlorobimane-based microplate assay. Antioxidants. 2022;11:391 https://doi.org/10.3390/antiox110

留言 (0)

沒有登入
gif